Linking cell function with perfusion: insights from the transcatheter delivery of bone marrow-derived CD133+ cells in ischemic refractory cardiomyopathy trial (RECARDIO)

Beatrice Bassetti, Corrado Carbucicchio, Valentina Catto, Elisa Gambini, Erica Rurali, Alberto Bestetti, Giuseppe Gaipa, Daniela Belotti, Fabrizio Celeste, Matteo Parma, Stefano Righetti, Lorenza Biava, Maurizio Arosio, Alice Bonomi, Piergiuseppe Agostoni, Paolo Scacciatella, Felice Achilli, Giulio Pompilio, Beatrice Bassetti, Corrado Carbucicchio, Valentina Catto, Elisa Gambini, Erica Rurali, Alberto Bestetti, Giuseppe Gaipa, Daniela Belotti, Fabrizio Celeste, Matteo Parma, Stefano Righetti, Lorenza Biava, Maurizio Arosio, Alice Bonomi, Piergiuseppe Agostoni, Paolo Scacciatella, Felice Achilli, Giulio Pompilio

Abstract

Background: Cell therapy with bone marrow (BM)-derived progenitors has emerged as a promising therapeutic for refractory angina (RA) patients. In the present study, we evaluated the safety and preliminary efficacy of transcatheter delivery of autologous BM-derived advanced therapy medicinal product CD133+ cells (ATMP-CD133) in RA patients, correlating perfusion outcome with cell function.

Methods: In the phase I "Endocavitary Injection of Bone Marrow Derived CD133+ Cells in Ischemic Refractory Cardiomyopathy" (RECARDIO) trial, a total of 10 patients with left ventricular (LV) dysfunction (ejection fraction ≤ 45%) and evidence of reversible ischemia, as assessed by single-photon emission computed tomography (SPECT), underwent BM aspiration and fluoroscopy-based percutaneous endomyocardial delivery of ATMP-CD133. Patients were evaluated at 6 and 12 months for safety and preliminary efficacy endpoints. ATMP-CD133 samples were used for in vitro correlations.

Results: Patients were treated safely with a mean number of 6.57 ± 3.45 × 106 ATMP-CD133. At 6-month follow-up, myocardial perfusion at SPECT was significantly ameliorated in terms of changes in summed stress (from 18.2 ± 8.6 to 13.8 ± 7.8, p = 0.05) and difference scores (from 12.0 ± 5.3 to 6.1 ± 4.0, p = 0.02) and number of segments with inducible ischemia (from 7.3 ± 2.2 to 4.0 ± 2.7, p = 0.003). Similarly, Canadian Cardiovascular Society and New York Heart Association classes significantly improved at follow-up vs baseline (p ≤ 0.001 and p = 0.007, respectively). Changes in summed stress score changes positively correlated with ATMP-CD133 release of proangiogenic cytokines HGF and PDGF-bb (r = 0.80, p = 0.009 and r = 0.77, p = 0.01, respectively) and negatively with the proinflammatory cytokines RANTES (r = - 0.79, p = 0.01) and IL-6 (r = - 0.76, p = 0.02).

Conclusion: Results of the RECARDIO trial suggested safety and efficacy in terms of clinical and perfusion outcomes in patients with RA and LV dysfunction. The observed link between myocardial perfusion improvements and ATMP-CD133 secretome may represent a proof of concept for further mechanistic investigations.

Trial registration: ClinicalTrials.gov, NCT02059681 . Registered 11 February 2014.

Conflict of interest statement

Ethics approval and consent to participate

The study complied with the Declaration of Helsinki and was approved by the local ethical committees (CCFM225/612 and CS/154) and the Italian Competent Authority (Istituto Superiore di Sanità, 15,934(13)PRE21-1199). The institutional review board at each center approved the protocol and all patients gave informed consent prior to participation. Patients were excluded in the case of denial and might withdraw from the study at any time, irrespective of the reason.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flow chart. SPECT gated-single photon emission computed tomography, CPET cardiopulmonary exercise testing, CMR cardiac magnetic resonance, 2D two-dimensional, ECG electrocardiogram, ATMP advanced therapy medicinal product, AE adverse event, SAE serious adverse event, MACE major adverse cardiac events
Fig. 2
Fig. 2
Schematic representation of the in vitro experimental plan. GMP good manufacturing practice, ATMP advanced therapy medicinal product, IL interleukin, SCF stem cell factor, FBS fetal bovine serum, PDGF-bb platelet-derived growth factor type bb, GRO-α growth-regulated oncogene alpha, HGF hepatocyte growth factor, VEGF vascular endothelial growth factor, RANTES regulated on activation normal T cell expressed and secreted, MIP-1b macrophage inflammatory protein-1 beta, MCP-1 monocyte chemoattractant protein-1, LIF leukemia inhibitory factor, FACS fluorescence-activated cell sorting, CFU-EC colony forming unit-endothelial cell, Ac-LDL-Dil acetylated low-density lipoprotein labeled with dioctadecyl-tetramethylindocarbocyanine perchlorate, UEA-1 Ulex europaeus agglutinin-1
Fig. 3
Fig. 3
Myocardial perfusion at SPECT after 6-month follow-up. Changes of a summed stress score, b summed rest score, c summed difference score and d number of segments with inducible ischemia per patient. Square data markers with error bars represent mean ± SD of each SPECT parameter at baseline and 6 months (n = 9). *p ≤ 0.05, **p ≤ 0.01, ns = not significant
Fig. 4
Fig. 4
Canadian Cardiovascular Society and New York Heart Association classes over 12-month follow-up. a Canadian Cardiovascular Society (CCS) class changes from 6 and 12 months to baseline (n = 8). b New York Heart Association (NYHA) class changes from 6 and 12 months to baseline (n = 10). Data presented as mean ± SD. **p ≤ 0.01, ***p ≤ 0.001. §§§p ≤ 0.001 vs baseline
Fig. 5
Fig. 5
Selected secreted signature of ATMP-CD133. Pro-angiogenic (green bars), pro-inflammatory (orange bars) and anti-angiogenic (red bars) factor expression levels detected in supernatants of ATMP-CD133 (n = 10). PDGF-bb platelet derived-growth factor type bb, GRO-α growth-regulated oncogene alpha, SCF stem cell factor, HGF hepatocyte growth factor, VEGF vascular endothelial growth factor, IL interleukin, RANTES regulated on activation normal T cell expressed and secreted, MIP-1b macrophage inflammatory protein-1 beta, MCP-1 monocyte chemoattractant protein-1, LIF leukemia inhibitory factor
Fig. 6
Fig. 6
ATMP-CD133 in vitro endothelial differentiation. Representative immunofluorescence of a clustered and (b–e) not clustered CFU-EC derived from ATMP-CD133 after 14 days in culture. Arrows indicate ATMP-CD133 committed to endothelial lineage, double-positive for Ac-LDL-Dil (red) and UEA-1 lectin (green). UEA-1 Ulex europaeus agglutinin-1, Ac-LDL-Dil acetylated low-density lipoprotein labeled with dioctadecyl-tetramethylindocarbocyanine perchlorate
Fig. 7
Fig. 7
Correlation between ATMP-CD133 secreted factors and myocardial perfusion changes at SPECT. SSS improvements correlate (a, b) positively with measured levels of proangiogenic factors and (c, d) negatively with proinflammatory factors (n = 9). SSS summed stress score, HGF hepatocyte growth factor, PDGF-bb platelet derived-growth factor type bb, RANTES regulated on activation normal T cell expressed and secreted, IL interleukin

References

    1. McGillion M, Arthur HM, Cook A, et al. Management of patients with refractory angina: Canadian Cardiovascular Society/Canadian Pain Society Joint Guidelines. Can J Cardiol. 2012;28:S20–S41. doi: 10.1016/j.cjca.2011.07.007.
    1. Henry TD, Satran D, Jolicoeur EM. Treatment of refractory angina in patients not suitable for revascularization. Nat Rev Cardiol. 2013;11:78–95. doi: 10.1038/nrcardio.2013.200.
    1. Henry TD, Satran D, Hodges JS, et al. Long-term survival in patients with refractory angina. Eur Heart J. 2013;34:2683–2688. doi: 10.1093/eurheartj/eht165.
    1. Povsic TJ, Broderick S, Anstrom KJ, Shaw LK, Ohman EM, Eisenstein EL, Smith PK, Alexander JH. Predictors of long-term clinical endpoints in patients with refractory angina. J Am Heart Assoc. 2015;4:1–12. doi: 10.1161/JAHA.114.001287.
    1. Andréll P, Ekre O, Grip L, Währborg P, Albertsson P, Eliasson T, Jeppsson A, Mannheimer C. Fatality, morbidity and quality of life in patients with refractory angina pectoris. Int J Cardiol. 2011;147:377–382. doi: 10.1016/j.ijcard.2009.09.538.
    1. Anavekar NS, Chareonthaitawee P, Narula J, Gersh BJ. Revascularization in patients with severe left ventricular dysfunction: is the assessment of viability still viable? J Am Coll Cardiol. 2016;67:2874–2887. doi: 10.1016/j.jacc.2016.03.571.
    1. Prasad M, Wan Ahmad WA, Sukmawan R, et al. Extracorporeal shockwave myocardial therapy is efficacious in improving symptoms in patients with refractory angina pectoris—a multicenter study. Coron Artery Dis. 2015;26:194–200. doi: 10.1097/MCA.0000000000000218.
    1. Abawi M, Nijhoff F, Stella PR, Voskuil M, Benedetto D, Doevendans PA, Agostoni P. Safety and efficacy of a device to narrow the coronary sinus for the treatment of refractory angina: a single-centre real-world experience. Netherlands Hear J. 2016;24:544–551. doi: 10.1007/s12471-016-0862-2.
    1. Pompilio G, Nigro P, Bassetti B, Capogrossi MC. Bone marrow cell therapy for ischemic heart disease: the never ending story. Circ Res. 2015;117:490–493. doi: 10.1161/CIRCRESAHA.115.307184.
    1. Nigro Patrizia, Bassetti Beatrice, Cavallotti Laura, Catto Valentina, Carbucicchio Corrado, Pompilio Giulio. Cell therapy for heart disease after 15 years: Unmet expectations. Pharmacological Research. 2018;127:77–91. doi: 10.1016/j.phrs.2017.02.015.
    1. Bassetti B, Nigro P, Catto V, Cavallotti L, Righetti S, Achilli F, Scacciatella P, Carbucicchio C, Pompilio G. Cell therapy for refractory angina: a reappraisal. Stem Cells Int. 2017:5648690.
    1. Khan AR, Farid TA, Pathan A, Tripathi A, Ghafghazi S, Wysoczynski M, Bolli R. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a systematic review and meta-analysis. Circ Res. 2016;118:984–993. doi: 10.1161/CIRCRESAHA.115.308056.
    1. Henry Timothy D, Losordo Douglas W, Traverse Jay H, Schatz Richard A, Jolicoeur E Marc, Schaer Gary L, Clare Robert, Chiswell Karen, White Christopher J, Fortuin F David, Kereiakes Dean J, Zeiher Andreas M, Sherman Warren, Hunt Andrea S, Povsic Thomas J. Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials. European Heart Journal. 2018;39(23):2208–2216. doi: 10.1093/eurheartj/ehx764.
    1. Bassetti B, Capogrossi MC, Pompilio G. Power is nothing without control: the enduring search for the best cell in cardiac cell therapy at a crossroads. Circ Res. 2016;119:988–991. doi: 10.1161/CIRCRESAHA.116.309619.
    1. Pompilio G, Steinhoff G, Liebold A, Pesce M, Alamanni F, Capogrossi MC, Biglioli P. Direct minimally invasive intramyocardial injection of bone marrow-derived AC133+ stem cells in patients with refractory ischemia: preliminary results. Thorac Cardiovasc Surg. 2008;56:71–76. doi: 10.1055/s-2007-989351.
    1. Gaipa G, Tilenni M, Straino S, et al. GMP-based CD133+ cells isolation maintains progenitor angiogenic properties and enhances standardization in cardiovascular cell therapy. J Cell Mol Med. 2010;14:1619–1634. doi: 10.1111/j.1582-4934.2009.00854.x.
    1. Belotti D, Gaipa G, Bassetti B, et al. Full GMP-compliant validation of bone marrow-derived human CD133+ cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy. Biomed Res Int. 2015:473159.
    1. Trachtenberg B, Velazquez DL, Williams AR, et al. Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind. Am Heart J. 2011;161:487–493. doi: 10.1016/j.ahj.2010.11.024.
    1. Carbucicchio C, Casella M, Catto V, Bassetti B, Bestetti A, Pompilio G. Novel application of 3-dimensional real-time cardiac imaging to guide stem cell-based therapy. Can J Cardiol. 2015;31:1073. doi: 10.1016/j.cjca.2015.02.030.
    1. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, Van Train KF, Berman DS. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138–2147.
    1. Berman DS, Kiat H, Friedman JD, Wang FP, Van Train K, Matzer L, Maddahi J, Germano G. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993;22:1455–1464. doi: 10.1016/0735-1097(93)90557-H.
    1. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiograph. J Am Soc Echocardiogr. 2005;18:1440–1463. doi: 10.1016/j.echo.2005.10.005.
    1. Lin T-M, Tsai J-L, Lin S-D, Lai C-S, Chang C-C. Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev. 2005;14:92–102. doi: 10.1089/scd.2005.14.92.
    1. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110:624–637. doi: 10.1161/CIRCRESAHA.111.243386.
    1. Weisz G, Généreux P, Iñiguez A, et al. Ranolazine in patients with incomplete revascularisation after percutaneous coronary intervention (RIVER-PCI): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387:136–145. doi: 10.1016/S0140-6736(15)00459-6.
    1. Beeres Saskia L.M.A., Bax Jeroen J., Dibbets-Schneider Petra, Stokkel Marcel P.M., Fibbe Willem E., van der Wall Ernst E., Schalij Martin J., Atsma Douwe E. Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: Twelve-month follow-up results. American Heart Journal. 2006;152(4):684.e11-684.e16. doi: 10.1016/j.ahj.2006.07.018.
    1. van Ramshorst J, et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia. JAMA. 2009;301:1997–2004. doi: 10.1001/jama.2009.685.
    1. Povsic TJ, Henry TD, Traverse JH, et al. The RENEW trial: efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina. JACC Cardiovasc Interv. 2016;9:1576–1585. doi: 10.1016/j.jcin.2016.05.003.
    1. Jimenez-Quevedo P, Gonzalez-Ferrer JJ, Sabate M, et al. Selected CD133+ progenitor cells to promote angiogenesis in patients with refractory angina final results of the PROGENITOR randomized trial. Circ Res. 2014;115:950–960. doi: 10.1161/CIRCRESAHA.115.303463.
    1. Wojakowski W, Jadczyk T, Michalewska-Włudarczyk A, et al. Effects of transendocardial delivery of bone marrow-derived CD133+ cells on left ventricle perfusion and function in patients with refractory angina. Circ Res. 2017;120:670–680. doi: 10.1161/CIRCRESAHA.116.309009.
    1. Fisher SA, Doree C, Brunskill SJ, Mathur A, Martin-Rendon E. Bone marrow stem cell treatment for ischemic heart disease in patients with no option of revascularization: a systematic review and meta-analysis. PLoS One. 2013;8:e64669. doi: 10.1371/journal.pone.0064669.
    1. Li N, Yang Y-J, Zhang Q, Jin C, Wang H, Qian H-Y. Stem cell therapy is a promising tool for refractory angina: a meta-analysis of randomized controlled trials. Can J Cardiol. 2013;29:908–914. doi: 10.1016/j.cjca.2012.12.003.
    1. Kandala J, Upadhyay GA, Pokushalov E, Wu S, Drachman DE, Singh JP. Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol. 2013;112:217–225. doi: 10.1016/j.amjcard.2013.03.021.
    1. Ratajczak J, Kucia M, Mierzejewska K, Marlicz W, Pietrzkowski Z, Wojakowski W, Greco NJ, Tendera M, Ratajczak MZ. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells—implications for stem cell therapies in regenerative medicine. Stem Cells Dev. 2013;22:422–430. doi: 10.1089/scd.2012.0268.
    1. Bongiovanni D, Bassetti B, Gambini E, Gaipa G, Frati G, Achilli F, Scacciatella P, Carbucicchio C, Pompilio G. The CD133 + cell as advanced medicinal product for myocardial and limb ischemia. Stem Cells Dev. 2014;23:2403–2421. doi: 10.1089/scd.2014.0111.
    1. Ramos AL, Darabi R, Akbarloo N, Borges L, Catanese J, Dineen SP, Brekken RA, Perlingeiro RCR. Clonal analysis reveals a common progenitor for endothelial, myeloid, and lymphoid precursors in umbilical cord blood. Circ Res. 2010;107:1460–1469. doi: 10.1161/CIRCRESAHA.110.223669.
    1. Guideline on Human Cell-Based Medicinal Products (EMEA/CHMP/410869/2006).
    1. Reflection Paper on Stem Cell-Based Medicinal Products (EMA/CAT/571134/2009, 2011).
    1. Rodrigo SF, Van Ramshorst J, Mann I, et al. Predictors of response to intramyocardial bone marrow cell treatment in patients with refractory angina and chronic myocardial ischemia. Int J Cardiol. 2014;175:539–544. doi: 10.1016/j.ijcard.2014.06.039.
    1. Rodrigo SF, Mann I, van Ramshorst J, Beeres SL, Zwaginga JJ, Fibbe WE, Bax JJ, Schalij MJ, Atsma DE. Safety and efficacy of percutaneous intramyocardial bone marrow cell injection for chronic myocardial ischemia: long-term results. J Interv Cardiol. 2017;30:440–447. doi: 10.1111/joic.12408.
    1. Henry TD, Schaer GL, Traverse JH, et al. Autologous CD34+ cell therapy for refractory angina: 2-year outcomes from the ACT34-CMI study. Cell Transplant. 2016;25:1701–1711. doi: 10.3727/096368916X691484.
    1. Fuchs S, Kornowski R, Weisz G, et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am J Cardiol. 2006;97:823–829. doi: 10.1016/j.amjcard.2005.09.132.
    1. Perin EC, Silva GV, Henry TD, et al. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF) Am Heart J. 2011;161:1078–1087. doi: 10.1016/j.ahj.2011.01.028.
    1. Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. Jama. 2014;311:62–73. doi: 10.1001/jama.2013.282909.
    1. Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by Transendocardial injection in patients with ischemic cardiomyopathy. Jama. 2012;308:2369. doi: 10.1001/jama.2012.25321.
    1. Mitsutake Y, Pyun WB, Rouy D, Foo CWP, Stertzer SH, Altman P, Ikeno F. Improvement of local cell delivery using Helix transendocardial delivery catheter in a porcine heart. Int Heart J. 2017;58:435–440. doi: 10.1536/ihj.16-179.
    1. Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. Jama. 2012;307:1717–1726. doi: 10.1001/jama.2012.418.
    1. Fernández-Avilés F, Sanz-Ruiz R, Climent AM, et al. Global position paper on cardiovascular regenerative medicine. Eur Heart J. 2017;38:2532–2546. doi: 10.1093/eurheartj/ehx248.
    1. Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol. 2013;169:290–303. doi: 10.1111/j.1476-5381.2012.01857.x.
    1. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–543. doi: 10.1161/01.CIR.97.6.535.
    1. Kucia M, Dawn B, Hunt G, et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res. 2004;95:1191–1199. doi: 10.1161/01.RES.0000150856.47324.5b.
    1. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39:733–742. doi: 10.1016/j.yjmcc.2005.07.003.
    1. Cao R, Bråkenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med. 2003;9:604–613. doi: 10.1038/nm848.
    1. Ishikawa F, Miyazono K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W, Heldin CH. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature. 1989;338:557–562. doi: 10.1038/338557a0.
    1. Kraaijeveld AO, De Jager SCA, De Jager WJ, et al. CC chemokine ligand-5 (CCL5/RANTES) and CC chemokine ligand-18 (CCL18/PARC) are specific markers of refractory unstable angina pectoris and are transiently raised during severe ischemic symptoms. Circulation. 2007;116:1931–1941. doi: 10.1161/CIRCULATIONAHA.107.706986.
    1. Kawamoto A, Iwasaki H, Kusano K, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation. 2006;114:2163–2169. doi: 10.1161/CIRCULATIONAHA.106.644518.

Source: PubMed

3
Suscribir