Changes in Gut Microbiota Correlates with Response to Treatment with Probiotics in Patients with Atopic Dermatitis. A Post Hoc Analysis of a Clinical Trial

Eric Climent, Juan Francisco Martinez-Blanch, Laura Llobregat, Beatriz Ruzafa-Costas, Miguel Ángel Carrión-Gutiérrez, Ana Ramírez-Boscá, David Prieto-Merino, Salvador Genovés, Francisco M Codoñer, Daniel Ramón, Empar Chenoll, Vicente Navarro-López, Eric Climent, Juan Francisco Martinez-Blanch, Laura Llobregat, Beatriz Ruzafa-Costas, Miguel Ángel Carrión-Gutiérrez, Ana Ramírez-Boscá, David Prieto-Merino, Salvador Genovés, Francisco M Codoñer, Daniel Ramón, Empar Chenoll, Vicente Navarro-López

Abstract

Atopic dermatitis (AD) is a chronic recurrent inflammatory skin disease with a high impact on the comfort of those who are affected and long-term treated with corticosteroids with limited efficacy and a high prevalence of relapses. Because of the limited effectiveness of these treatments, new strategies for recovery from AD lesions are continually being explored. In this article, we describe the gut microbiome changes achieved in a recently published clinical trial with the probiotic formulation Bifidobacterium animalis subsp. lactis CECT 8145, Bifidobacterium longum CECT 7347, and Lacticaseibacillus casei CECT 9104 (formerly Lactobacillus casei CECT 9104), showing a significant improvement in SCORAD (scoring atopic dermatitis) index in children (4-17 years) with AD (Clinicaltrials.gov identifier: NCT02585986). The present gut microbiome post hoc study showed no significant changes in diversity (Shannon and Simpson indexes) after probiotic consumption. In the probiotic group, genera Bacteroides, Ruminococcus, and Bifidobacterium significantly increased their levels while Faecalibacterium decreased, compared to the placebo group. Faecalibacterium showed the highest presence and significant positive correlation with AD severity (SCORAD index), whereas Abyssivirga, Bifidobacterium, and Lactococcus were inversely correlated. The results suggest that the consumption of the probiotic formulation here assayed modulates the gut microbiome with significant changes in genera Bacteroides and Faecalibacterium. In turn, the improvement in SCORAD correlates with a decrease in Faecalibacterium and an increase in Bifidobacterium, among others.

Keywords: Bifidobacterium; Faecalibacterium; atopic dermatitis; gut-skin axis; microbiome; probiotics.

Conflict of interest statement

V.N.-L., B.R.-C., M.Á.C.-G., A.R.-B., and D.P.-M. declare no conflicts of interests. E.C. (Eric Climent), L.L., J.F.M.-B., S.G., F.M.C., D.R., and E.C. (Empar Chenoll) are employees of ADM Biopolis.

Figures

Figure 1
Figure 1
Diversity values obtained in placebo and probiotic groups.
Figure 2
Figure 2
Significant genera before and after probiotic treatment.
Figure 3
Figure 3
Violin plots showing significant genera comparing the placebo and probiotic groups’ evolution: (a) genus Bacteroides; (b) genus Ruminococcus; (c) genus Bifidobacterium; (d) genus Faecalibacterium.
Figure 4
Figure 4
Correlation between SCORAD index and genera.

References

    1. Silverberg N.B. A practical overview of pediatric atopic dermatitis, part 1: Epidemiology and pathogenesis. Cutis. 2016;97:267–271.
    1. Garg N., Silverberg J.I. Epidemiology of childhood atopic dermatitis. Clin. Derm. 2015;33:281–288. doi: 10.1016/j.clindermatol.2014.12.004.
    1. Mohn C.H., Blix H.S., Halvorsen J.A., Nafstad P., Valberg M., Lagerløv P. Incidence Trends of Atopic Dermatitis in Infancy and Early Childhood in a Nationwide Prescription Registry Study in Norway. JAMA Netw. Open. 2018;1:e184145. doi: 10.1001/jamanetworkopen.2018.4145.
    1. Irvine A.D., McLean W.H., Leung D.Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011;365:1315–1327. doi: 10.1056/NEJMra1011040.
    1. Buzney C.D., Gottlieb A.B., Rosmarin D. Asthma and Atopic Dermatitis: A Review of Targeted Inhibition of Interleukin-4 and Interleukin-13 As Therapy for Atopic Disease. J. Drugs Derm. 2016;15:165–171.
    1. Tan Q., Yang H., Liu E., Wang H. P38/ERK MAPK signaling pathways are involved in the regulation of filaggrin and involucrin by IL-17. Mol. Med. Rep. 2017;16:8863–8867. doi: 10.3892/mmr.2017.7689.
    1. Stalder J.F., Fluhr J.W., Foster T., Glatz M., Proksch E. The emerging role of skin microbiome in atopic dermatitis and its clinical implication. J. Dermatol. Treat. 2019;30:357–364. doi: 10.1080/09546634.2018.1516030.
    1. Totté J.E., van der Feltz W.T., Hennekam M., van Belkum A., van Zuuren E.J., Pasmans S.G. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: A systematic review and meta-analysis. Br. J. Derm. 2016;175:687–695. doi: 10.1111/bjd.14566.
    1. Arikawa J., Ishibashi M., Kawashima M., Takagi Y., Ichikawa Y., Imokawa G. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum corneum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J. Invest. Derm. 2002;119:433–439. doi: 10.1046/j.1523-1747.2002.01846.x.
    1. Ong P.Y., Ohtake T., Brandt C., Strickland I., Boguniewicz M., Ganz T., Gallo R.L., Leung D.Y. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 2002;347:1151–1160. doi: 10.1056/NEJMoa021481.
    1. Darabi K., Hostetler S.G., Bechtel M.A., Zirwas M. The role of Malassezia in atopic dermatitis affecting the head and neck of adults. J. Am. Acad. Derm. 2009;60:125–136. doi: 10.1016/j.jaad.2008.07.058.
    1. Kong H.H., Oh J., Deming C., Conlan S., Grice E.A., Beatson M.A., Nomicos E., Polley E.C., Komarow H.D., Murray P.R., et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–859. doi: 10.1101/gr.131029.111.
    1. Shi B., Bangayan N.J., Curd E., Taylor P.A., Gallo R.L., Leung D.Y.M., Li H. The skin microbiome is different in pediatric versus adult atopic dermatitis. J. Allergy Clin. Immunol. 2016;138:1233–1236. doi: 10.1016/j.jaci.2016.04.053.
    1. Giuffrè M., Campigotto M., Campisciano G., Comar M., Crocè L.S. A story of liver and gut microbes: How does the intestinal flora affect liver disease? A review of the literature. Am. J. Physiol. Gastrointest. Liver Physiol. 2020;318:G889–G906. doi: 10.1152/ajpgi.00161.2019.
    1. Giuffrè M., Moretti R., Campisciano G., da Silveira A.B.M., Monda V.M., Comar M., Di Bella S., Antonello R.M., Luzzati R., Crocè L.S. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J. Clin. Med. 2020;9:3705. doi: 10.3390/jcm9113705.
    1. Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–455. doi: 10.1038/nature12726.
    1. Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A., Glickman J.N., Siebert R., Baron R.M., Kasper D.L., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–493. doi: 10.1126/science.1219328.
    1. Zeng M.Y., Inohara N., Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10:18–26. doi: 10.1038/mi.2016.75.
    1. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly Y.M., Glickman J.N., Garrett W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–573. doi: 10.1126/science.1241165.
    1. Plöger S., Stumpff F., Penner G.B., Schulzke J.D., Gäbel G., Martens H., Shen Z., Günzel D., Aschenbach J.R. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci. 2012;1258:52–59. doi: 10.1111/j.1749-6632.2012.06553.x.
    1. Song H., Yoo Y., Hwang J., Na Y.C., Kim H.S. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis. J. Allergy Clin. Immunol. 2016;137:852–860. doi: 10.1016/j.jaci.2015.08.021.
    1. Chong M., Fonacier L. Treatment of Eczema: Corticosteroids and Beyond. Clin. Rev. Allergy Immunol. 2016;51:249–262. doi: 10.1007/s12016-015-8486-7.
    1. Luger T., Boguniewicz M., Carr W., Cork M., Deleuran M., Eichenfield L., Eigenmann P., Fölster-Holst R., Gelmetti C., Gollnick H., et al. Pimecrolimus in atopic dermatitis: Consensus on safety and the need to allow use in infants. Pediatr. Allergy Immunol. 2015;26:306–315. doi: 10.1111/pai.12331.
    1. Roekevisch E., Spuls P.I., Kuester D., Limpens J., Schmitt J. Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: A systematic review. J. Allergy Clin. Immunol. 2014;133:429–438. doi: 10.1016/j.jaci.2013.07.049.
    1. Zeng J., Dou J., Gao L., Xiang Y., Huang J., Ding S., Chen J., Zeng Q., Luo Z., Tan W., et al. Topical ozone therapy restores microbiome diversity in atopic dermatitis. Int. Immunopharmacol. 2020;80:106191. doi: 10.1016/j.intimp.2020.106191.
    1. Navarro-López V., Ramírez-Boscá A., Ramón-Vidal D., Ruzafa-Costas B., Genovés-Martínez S., Chenoll-Cuadros E., Carrión-Gutiérrez M., de la Parte J.H., Prieto-Merino D., Codoñer-Cortés F.M. Effect of Oral Administration of a Mixture of Probiotic Strains on SCORAD Index and Use of Topical Steroids in Young Patients With Moderate Atopic Dermatitis: A Randomized Clinical Trial. JAMA Derm. 2018;154:37–43. doi: 10.1001/jamadermatol.2017.3647.
    1. Eichenfield L.F., Tom W.L., Berger T.G., Krol A., Paller A.S., Schwarzenberger K., Bergman J.N., Chamlin S.L., Cohen D.E., Cooper K.D., et al. Guidelines of care for the management of atopic dermatitis: Section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Derm. 2014;71:116–132. doi: 10.1016/j.jaad.2014.03.023.
    1. Zheng J., Wittouck S., Salvetti E., Franz C., Harris H.M.B., Mattarelli P., O’Toole P.W., Pot B., Vandamme P., Walter J., et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020 doi: 10.1099/ijsem.0.004107.
    1. Saeki H., Furue M., Furukawa F., Hide M., Ohtsuki M., Katayama I., Sasaki R., Suto H., Takehara K. Guidelines for management of atopic dermatitis. J. Derm. 2009;36:563–577. doi: 10.1111/j.1346-8138.2009.00706.x.
    1. Yuan S., Cohen D.B., Ravel J., Abdo Z., Forney L.J. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE. 2012;7:e33865. doi: 10.1371/journal.pone.0033865.
    1. Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808.
    1. Zhang J., Kobert K., Flouri T., Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593.
    1. Marcel M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:2. doi: 10.14806/ej.17.1.200.
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944.
    1. Derrien M., Alvarez A.-S., de Vos W.M. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019;27:997–1010. doi: 10.1016/j.tim.2019.08.001.
    1. Watanabe S., Narisawa Y., Arase S., Okamatsu H., Ikenaga T., Tajiri Y., Kumemura M. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J. Allergy Clin. Immunol. 2003;111:587–591. doi: 10.1067/mai.2003.105.
    1. Charoenngam N., Shirvani A., Kalajian T.A., Song A., Holick M.F. The Effect of Various Doses of Oral Vitamin D(3) Supplementation on Gut Microbiota in Healthy Adults: A Randomized, Double-blinded, Dose-response Study. Anticancer Res. 2020;40:551–556. doi: 10.21873/anticanres.13984.
    1. Tan-Lim C.S.C., Esteban-Ipac N.A.R., Mantaring J.B.V., 3rd, Chan Shih Yen E., Recto M.S.T., Sison O.T., Alejandria M.M. Comparative effectiveness of probiotic strains for the treatment of pediatric atopic dermatitis: A systematic review and network meta-analysis. Pediatr. Allergy Immunol. 2020 doi: 10.1111/pai.13305.
    1. Reddel S., Del Chierico F., Quagliariello A., Giancristoforo S., Vernocchi P., Russo A., Fiocchi A., Rossi P., Putignani L., El Hachem M. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci. Rep. 2019;9:4996. doi: 10.1038/s41598-019-41149-6.
    1. Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012.
    1. Rios-Covian D., Cuesta I., Alvarez-Buylla J.R., Ruas-Madiedo P., Gueimonde M., de Los Reyes-Gavilán C.G. Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiol. 2016;16:150. doi: 10.1186/s12866-016-0773-9.
    1. Anand S., Kaur H., Mande S.S. Comparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens. Front. Microbiol. 2016;7:1945. doi: 10.3389/fmicb.2016.01945.
    1. Ohkawara S., Furuya H., Nagashima K., Asanuma N., Hino T. Oral administration of butyrivibrio fibrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant crypt foci in the colon and rectum of mice. J. Nutr. 2005;135:2878–2883. doi: 10.1093/jn/135.12.2878.
    1. Heinken A., Khan M.T., Paglia G., Rodionov D.A., Harmsen H.J., Thiele I. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J. Bacteriol. 2014;196:3289–3302. doi: 10.1128/JB.01780-14.
    1. Huang X.-Z., Li Z.-R., Zhu L.-B., Huang H.-Y., Hou L.-L., Lin J. Inhibition of p38 Mitogen-Activated Protein Kinase Attenuates Butyrate-Induced Intestinal Barrier Impairment in a Caco-2 Cell Monolayer Model. J. Pediatric Gastroenterol. Nutr. 2014;59:264–269. doi: 10.1097/MPG.0000000000000369.
    1. Hidalgo-Cantabrana C., Delgado S., Ruiz L., Ruas-Madiedo P., Sánchez B., Margolles A. Bifidobacteria and Their Health-Promoting Effects. Microbiol. Spectr. 2017;5:1–19. doi: 10.1128/microbiolspec.BAD-0010-2016.

Source: PubMed

3
Suscribir