Radiotherapy and immune response: the systemic effects of a local treatment

Heloisa de Andrade Carvalho, Rosangela Correa Villar, Heloisa de Andrade Carvalho, Rosangela Correa Villar

Abstract

Technological developments have allowed improvements in radiotherapy delivery, with higher precision and better sparing of normal tissue. For many years, it has been well known that ionizing radiation has not only local action but also systemic effects by triggering many molecular signaling pathways. There is still a lack of knowledge of this issue. This review focuses on the current literature about the effects of ionizing radiation on the immune system, either suppressing or stimulating the host reactions against the tumor, and the factors that interact with these responses, such as the radiation dose and dose / fraction effects in the tumor microenvironment and vasculature. In addition, some implications of these effects in cancer treatment, mainly in combined strategies, are addressed from the perspective of their interactions with the more advanced technology currently available, such as heavy ion therapy and nanotechnology.

Conflict of interest statement

No potential conflict of interest was reported.

Figures

Figure 1
Figure 1
The effects of ionizing radiation effects on the immune system. Either stimulation or suppression of the immune system occurs. Stressed cells may simply undergo anti-inflammatory clearance resulting in non-immunogenic cell death or trigger inflammatory signaling that will release damage-associated molecular patterns (DAMPs) with the activation of dendritic cells that initiate cytotoxic T-cell responses against tumor cells. On the other hand, inactivation of these cells (DCs and cytotoxic T-cells) with the recruitment of MDSCs and T regulator lymphocytes and the secretion of TGF-β leads to the modification of the macrophage phenotype from a pro-inflammatory type M1 to an immunosuppressive type M2 that may allow tumor growth and progression. [Adapted from Derer et al., 2015 and Bockel et al., 2017 93]. Abbreviations: TGF-β, tumor growth factor-β; IL, interleukin; RT, radiotherapy; HSP, heat shock proteins; HMGB1, high mobility group box 1 molecules; ATP, adenosine-5-triphosphate; TNF, tumor necrosis factor; NOS, nitrogen reactive species; DC, dentritic cells; NK, natural killer; MDSC, myeloid derived suppressor cells; Treg, T regulator lymphocyte; TGF-β, tumor growth factor-β; TAM, tumor-associated macrophages.

References

    1. Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihöfer C, et al. Current concepts in clinical radiation oncology. Radiat Environ Biophys. 2014;53((1)):1–29. doi: 10.1007/s00411-013-0497-2.
    1. Timmerman RD, Herman J, Cho LC. Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. J Clin Oncol. 2014;32((26)):2847–54. doi: 10.1200/JCO.2014.55.4675.
    1. Wu Q, Allouch A, Martins I, Brenner C, Modjtahedi N, Deutsch E, et al. Modulating both tumor cell death and innate immunity is essential for improving radiation therapy effectiveness. Front Immunol. 2017;8:613. doi: 10.3389/fimmu.2017.00613.
    1. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15((7)):409–25. doi: 10.1038/nrc3958.
    1. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161((2)):205–14. doi: 10.1016/j.cell.2015.03.030.
    1. Hall EJ. In: Radiobiology for the radiologist. Hall EJ, Giaccia AJ, editors. Philadelphia: Lippincott Williams & Wilkins; 2012. pp. 3–11. eds. Title. 7th ed. p.
    1. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14((7)):1237–43. doi: 10.1038/sj.cdd.4402148.
    1. Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell. 1991;65((7)):1097–8. doi: 10.1016/0092-8674(91)90002-G.
    1. Perfettini JL, Kroemer G. Caspase activation is not death. Nat Immunol. 2003;4((4)):308–10. doi: 10.1038/ni0403-308.
    1. Dunn WA., Jr Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990;110((6)):1935–45. doi: 10.1083/jcb.110.6.1935.
    1. Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 2015;22((3)):367–76. doi: 10.1038/cdd.2014.143.
    1. Zeng X, Kinsella TJ. Impact of autophagy on chemotherapy and radiotherapy mediated tumor cytotoxicity: "To live or not to live". Front Oncol. 2011;1:30. doi: 10.3389/fonc.2011.00030.
    1. Jo GH, Bögler O, Chwae YJ, Yoo H, Lee SH, Park JB, et al. Radiation-induced autophagy contributes to cell death and induces apoptosis partly in malignant glioma cells. Cancer Res Treat. 2015;47((2)):221–41. doi: 10.4143/crt.2013.159.
    1. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9((12)):1004–10. doi: 10.1038/nrm2529.
    1. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132((1)):27–42. doi: 10.1016/j.cell.2007.12.018.
    1. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Nomenclature Committee on Cell Death 2009 Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16((1)):3–11. doi: 10.1038/cdd.2008.150.
    1. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4((5)):313–21. doi: 10.1038/nchembio.83.
    1. Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 2006;1757((9-10)):1371–87. doi: 10.1016/j.bbabio.2006.06.014.
    1. Rainaldi G, Ferrante A, Indovina PL, Santini MT. Induction of apoptosis or necrosis by ionizing radiation is dose-dependent in MG-63 osteosarcoma multicellular spheroids. Anticancer Res. 2003;23((3B)):2505–18.
    1. Deloch L, Derer A, Hartmann J, Frey B, Fietkau R, Gaipl US. Modern radiotherapy concepts and the impact of radiation on immune activation. Front Oncol. 2016;6:141. doi: 10.3389/fonc.2016.00141.
    1. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31((4)):363–72. doi: 10.1007/s13277-010-0042-8.
    1. Jonathan EC, Bernhard EJ, McKenna WG. How does radiation kill cells? Curr Opin Chem Biol. 1999;3((1)):77–83. doi: 10.1016/S1367-5931(99)80014-3.
    1. Mc Gee MM. Targeting the mitotic catastrophe signaling pathway in cancer. Mediators Inflamm. 2015;2015:146282. doi: 10.1155/2015/146282.
    1. Rödel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett. 2015;356((1)):105–13. doi: 10.1016/j.canlet.2013.09.015.
    1. Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015;25((1)):11–7. doi: 10.1016/j.semradonc.2014.07.005.
    1. Gaipl US, Multhoff G, Scheithauer H, Lauber K, Hehlgans S, Frey B, et al. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy. 2014;6((5)):597–610. doi: 10.2217/imt.14.38.
    1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3((11)):991–8. doi: 10.1038/ni1102-991.
    1. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21((2)):137–48. doi: 10.1016/j.immuni.2004.07.017.
    1. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22((1)):329–60. doi: 10.1146/annurev.immunol.22.012703.104803.
    1. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29((1)):235–71. doi: 10.1146/annurev-immunol-031210-101324.
    1. Manda K, Glasow A, Paape D, Hildebrandt G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front Oncol. 2012;2:102. doi: 10.3389/fonc.2012.00102.
    1. Bauer M, Goldstein M, Christmann M, Becker H, Heylmann D, Kaina B. Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci USA. 2011;108((52)):21105–10. doi: 10.1073/pnas.1111919109.
    1. Wunderlich R, Ernst A, Rödel F, Fietkau R, Ott O, Lauber K, et al. Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol. 2015;179((1)):50–61. doi: 10.1111/cei.12344.
    1. Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res. 1996;56((22)):5150–5.
    1. Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal J. The controversial abscopal effect. Cancer Treat Rev. 2005;31((3)):159–72. doi: 10.1016/j.ctrv.2005.03.004.
    1. Nobler MP. The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation. Radiology. 1969;93((2)):410–2. doi: 10.1148/93.2.410.
    1. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58((3)):862–70. doi: 10.1016/j.ijrobp.2003.09.012.
    1. Levy A, Chargari C, Marabelle A, Perfettini JL, Magné N, Deutsch E. Can immunostimulatory agents enhance the abscopal effect of radiotherapy? Eur J Cancer. 2016;62:36–45. doi: 10.1016/j.ejca.2016.03.067.
    1. Derer A, Deloch L, Rubner Y, Fietkau R, Frey B, Gaipl US. Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses - pre-clinical evidence and ongoing clinical applications. Front Immunol. 2015;6:505. doi: 10.3389/fimmu.2015.00505.
    1. Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol. 2013;4:138. doi: 10.3389/fimmu.2013.00138.
    1. Merrick A, Errington F, Milward K, O’Donnell D, Harrington K, Bateman A, et al. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer. 2005;92((8)):1450–8. doi: 10.1038/sj.bjc.6602518.
    1. Aymeric L, Apetoh L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res. 2010;70((3)):855–8. doi: 10.1158/0008-5472.CAN-09-3566.
    1. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10((7)):718–26. doi: 10.1016/S1470-2045(09)70082-8.
    1. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15((7)):409–25. doi: 10.1038/nrc3958. Duplicata da 4.
    1. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293((5528)):293–7. doi: 10.1126/science.1060191.
    1. Wang J, Boerma M, Fu Q, Hauer-Jensen M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol. 2007;13((22)):3047–55. doi: 10.3748/wjg.v13.i22.3047.
    1. Baker DG, Krochak RJ. The response of the microvascular system to radiation: a review. Cancer Invest. 1989;7((3)):287–94. doi: 10.3109/07357908909039849.
    1. Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS) Radiat Res. 2012;177((3)):311–27. doi: 10.1667/RR2773.1.
    1. Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. 2012;2:153. doi: 10.3389/fonc.2012.00153.
    1. Golden EB, Formenti SC. Is tumor (R)ejection by the immune system the “5th R” of radiobiology? OncoImmunology. 2014;3((1)):e28133. doi: 10.4161/onci.28133.
    1. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. 2016;4:51. doi: 10.1186/s40425-016-0156-7.
    1. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15((17)):5379–88. doi: 10.1158/1078-0432.CCR-09-0265.
    1. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83((4)):1306–10. doi: 10.1016/j.ijrobp.2011.09.049.
    1. Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21((16)):3727–39. doi: 10.1158/1078-0432.CCR-14-2824.
    1. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74((19)):5458–68. doi: 10.1158/0008-5472.CAN-14-1258.
    1. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15((17)):5379–88. doi: 10.1158/1078-0432.CCR-09-0265. Duplicata da 52.
    1. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30((1)):1–22. doi: 10.1146/annurev-immunol-100311-102839.
    1. Gupta A, Probst HC, Vuong V, Landshammer A, Muth S, Yagita H, et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J Immunol. 2012;189((2)):558–66. doi: 10.4049/jimmunol.1200563.
    1. Parker JJ, Jones JC, Strober S, Knox SJ. Characterization of direct radiation-induced immune function and molecular signaling changes in an antigen presenting cell line. Clin Immunol. 2013;148((1)):44–55. doi: 10.1016/j.clim.2013.03.008.
    1. Brown JM, Koong AC. High-dose single-fraction radiotherapy: exploiting a new biology? Int J Radiat Oncol Biol Phys. 2008;71((2)):324–5. doi: 10.1016/j.ijrobp.2008.02.003.
    1. Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS) Radiat Res. 2012;177((3)):311–27. doi: 10.1667/RR2773.1. Duplicata da 48.
    1. Karam SD, Bhatia S. The radiobiological targets of SBRT: tumor cells or endothelial cells? Ann Transl Med. 2015;3((19)):290. doi: 10.3978/j.issn.2305-5839.2015.09.17.
    1. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300((5622)):1155–9. doi: 10.1126/science.1082504.
    1. Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8((2)):89–91. doi: 10.1016/j.ccr.2005.07.014.
    1. Fernandez-Gonzalo R, Baatout S, Moreels M. Impact of particle irradiation on the immune system: from the clinic to mars. Front Immunol. 2017;8:177. doi: 10.3389/fimmu.2017.00177.
    1. Gridley DS, Obenaus A, Bateman TA, Pecaut MJ. Long-term changes in rat hematopoietic and other physiological systems after high-energy iron ion irradiation. Int J Radiat Biol. 2008;84((7)):549–59. doi: 10.1080/09553000802203614.
    1. Sanzari JK, Cengel KA, Wan XS, Rusek A, Kennedy AR. Acute hematological effects in mice exposed to the expected doses, dose-rates, and energies of solar particle event-like proton radiation. Life Sci Space Res (Amst) 2014;2:86–91. doi: 10.1016/j.lssr.2014.01.003.
    1. Gridley DS, Pecaut MJ. Changes in the distribution and function of leukocytes after whole-body iron ion irradiation. J Radiat Res (Tokyo) 2016;57((5)):477–91. doi: 10.1093/jrr/rrw051.
    1. Sanzari JK, Wan XS, Muehlmatt A, Lin L, Kennedy AR. Comparison of changes over time in leukocyte counts in Yucatan minipigs irradiated with simulated solar particle event-like radiation. Life Sci Space Res (Amst) 2015;4:11–6. doi: 10.1016/j.lssr.2014.12.002.
    1. Gridley DS, Luo-Owen X, Rizvi A, Makinde A, Pecaut M, Mao XW, et al. Low-dose photon and simulated solar particle event proton effects on Foxp3+ T regulatory cells and other leukocytes. Technol Cancer Res Treat. 2010;9((6)):637–49. doi: 10.1177/153303461000900612.
    1. Shimokawa T, Ma L, Ando K, Sato K, Imai T. The future of combining carbon-ion radiotherapy with immunotherapy: evidence and progress in mouse models. Int J Particle Ther. 2016;3((1)):61–70. doi: 10.14338/IJPT-15-00023.1.
    1. Durante M, Brenner DJ, Formenti SC. Does heavy ion therapy work through the immune system? Int J Radiat Oncol Biol Phys. 2016;96((5)):934–6. doi: 10.1016/j.ijrobp.2016.08.037.
    1. Matsunaga A, Ueda Y, Yamada S, Harada Y, Shimada H, Hasegawa M, et al. Carbon-ion beam treatment induces systemic antitumor immunity against murine squamous cell carcinoma. Cancer. 2010;116((15)):3740–8. doi: 10.1002/cncr.25134.
    1. Girdhani S, Sachs R, Hlatky L. Biological effects of proton radiation: what we know and don’t know. Radiat Res. 2013;179((3)):257–72. doi: 10.1667/RR2839.1.
    1. Girdhani S, Lamont C, Hahnfeldt P, Abdollahi A, Hlatky L. Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth. Radiat Res. 2012;178((1)):33–45. doi: 10.1667/RR2724.1.
    1. Gameiro SR, Malamas AS, Bernstein MB, Tsang KY, Vassantachart A, Sahoo N, et al. Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature rendering them more sensitive to T cell mediated killing. Int J Radiat Oncol Biol Phys. 2016;95((1)):120–30. doi: 10.1016/j.ijrobp.2016.02.022.
    1. Yoshimoto Y, Oike T, Okonogi N, Suzuki Y, Ando K, Sato H, et al. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation. J Radiat Res (Tokyo) 2015;56((3)):509–14. doi: 10.1093/jrr/rrv007.
    1. Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, et al. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res. 2005;65((1)):113–20.
    1. Ohkubo Y, Iwakawa M, Seino K, Nakawatari M, Wada H, Kamijuku H, et al. Combining carbon ion radiotherapy and local injection of α-galactosylceramide-pulsed dendritic cells inhibits lung metastases in an in vivo murine model. Int J Radiat Oncol Biol Phys. 2010;78((5)):1524–31. doi: 10.1016/j.ijrobp.2010.06.048.
    1. Ando K, Fujita H, Hosoi A, Nakawatari M, Nakamura E, Kakimi K, et al. Effective suppression of pulmonary metastasis in combined carbon ion radiation therapy with dendritic-cell immunotherapy in murine tumor models. Int J Radiat Oncol Biol Phys. 2013;87((2)):S642. doi: 10.1016/j.ijrobp.2013.06.1700.
    1. King RB, McMahon SJ, Hyland WB, Jain S, Butterworth KT, Prise KM, et al. An overview of current practice in external beam radiation oncology with consideration to potential benefits and challenges for nanotechnology. Cancer Nanotechnol. 2017;8((1)):3. doi: 10.1186/s12645-017-0027-z.
    1. Sancey L, Lux F, Kotb S, Roux S, Dufort S, Bianchi A, et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 2014;87((1041)):20140134. doi: 10.1259/bjr.20140134.
    1. Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49((18)):N309–15. doi: 10.1088/0031-9155/49/18/N03.
    1. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60((8)):977–85. doi: 10.1211/jpp.60.8.0005.
    1. Butterworth KT, McMahon SJ, Currell FJ, Prise KM. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 2012;4((16)):4830–8. doi: 10.1039/c2nr31227a.
    1. Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, et al. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. Int J Radiat Oncol Biol Phys. 2010;78((5)):1494–502. doi: 10.1016/j.ijrobp.2010.02.020.
    1. Milas L, Hunter N, Withers HR. Combination of local irradiation with systemic application of anaerobic corynebacteria in therapy of a murine fibrosarcoma. Cancer Res. 1975;35((5)):1274–7.
    1. Nesslinger NJ, Sahota RA, Stone B, Johnson K, Chima N, King C, et al. Standard treatments induce antigen-specific immune responses in prostate cancer. Clin Cancer Res. 2007;13((5)):1493–502. doi: 10.1158/1078-0432.CCR-06-1772.
    1. Gulley J, Chen AP, Dahut W, Arlen PM, Bastian A, Steinberg SM, et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate. 2002;53((2)):109–17. doi: 10.1002/pros.10130.
    1. Schaue D, Comin-Anduix B, Ribas A, Zhang L, Goodglick L, Sayre JW, et al. T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res. 2008;14((15)):4883–90. doi: 10.1158/1078-0432.CCR-07-4462.
    1. Adams S, Kozhaya L, Martiniuk F, Meng TC, Chiriboga L, Liebes L, et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res. 2012;18((24)):6748–57. doi: 10.1158/1078-0432.CCR-12-1149.
    1. Crittenden M, Kohrt H, Levy R, Jones J, Camphausen K, Dicker A, et al. Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol. 2015;25((1)):54–64. doi: 10.1016/j.semradonc.2014.07.003.
    1. Bockel S, Antoni D, Deutsch É, Mornex F. [Immunotherapy and radiotherapy] Cancer Radiother. 2017;21((3)):244–55. doi: 10.1016/j.canrad.2016.12.005.

Source: PubMed

3
Suscribir