Defining the role of medication adherence in poor glycemic control among a general adult population with diabetes

Becca S Feldman, Chandra J Cohen-Stavi, Morton Leibowitz, Moshe B Hoshen, Shepherd R Singer, Haim Bitterman, Nicky Lieberman, Ran D Balicer, Becca S Feldman, Chandra J Cohen-Stavi, Morton Leibowitz, Moshe B Hoshen, Shepherd R Singer, Haim Bitterman, Nicky Lieberman, Ran D Balicer

Abstract

Aims: This study assesses the attributable impact of adherence to oral glucose medications as a risk factor for poor glycemic control in population subgroups of a large general population, using an objective medication adherence measure.

Methods: Using electronic health records data, adherence to diabetes medications over a two-year period was calculated by prescription-based Medication Possession Ratios for adults with diabetes diagnosed before January 1, 2010. Glycemic control was determined by the HbA1c test closest to the last drug prescription during 2010-2012. Poor control was defined as HbA1c>75 mmol/mol (9.0%). Medication adherence was categorized as "good" (>80%), "moderate" (50-80%), or "poor" (<50%). Logistic regression models assessed the role medication adherence plays in the association between disease duration, age, and poor glycemic control. We calculated the change in the attributable fraction of glucose control if the non-adherent diabetic medication population would become adherent by age-groups.

Results: Among 228,846 diabetes patients treated by oral antiglycemic medication, 46.4% had good, 28.8% had moderate, and 24.8% had poor adherence. Good adherence rates increased with increasing disease duration, while glycemic control became worse. There was a strong inverse association between adherence level and poor control (OR = 2.50; CI = 2.43-2.58), and adherence was a significant mediator between age and poor control.

Conclusions: A large portion of the diabetes population is reported to have poor adherence to oral diabetes medications, which is strongly associated with poor glycemic control in all disease durations. While poor adherence does not mediate the poorer glycemic control seen in patients with longer-standing disease, it is a significant mediator of poor glycemic control among younger diabetes patients. A greater fraction of poorly controlled younger patients, compared to older patients, could be prevented if at least 80% adherence to their medications was achieved. Therefore, our results suggest that interventions to improve adherence should focus on this younger sub-group.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Patient exclusions flow chart.
Figure 1. Patient exclusions flow chart.
The figure shows the process for arriving at the final sample size. After all exclusion criteria were applied, a final study population of 228,846 patients with diabetes who had a prescription for oral anti-glycemic medications and an HbA1c test performed was yielded.
Figure 2. Percent of study population with…
Figure 2. Percent of study population with poor adherence and poor control by disease duration and age.
Figure 2a shows that there is a positive correlation between the duration of having diabetes, and the level of poor control over the disease. In other words, the longer a patient has diabetes, the poorer his control may be. Furthermore, as the duration of having diabetes increases, poor adherence to medication decreases; so medication adherence is stronger among those who have had diabetes longer. Figure 2b demonstrates that as the age group of patients with diabetes increases, both poor control of the disease and poor medication adherence decreases. In other words, control and adherence are stronger among the older age groups.

References

    1. Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, et al. (2012) Diabetes in older adults. Diabetes Care 35: 2650–64.
    1. ADVANCE Collaboration Group (2008) Patel A, MacMahon S, Chalmers J, Neal B, et al. (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358: 2560–2572.
    1. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, et al. (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321: 405–412.
    1. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986.
    1. Huang ES, Liu JY, Moffet HH, John PM, Karter AJ (2011) Glycemic control, complications, and death in older diabetic patients: the diabetes and aging study. Diabetes Care 34: 1329–1336.
    1. Ho PM, Rumsfeld JS, Masoudi FA, McClure DL, Plomondon ME, et al. (2006) Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. Arch Intern Med 166: 1836–1841.
    1. American Diabetes Association (2013) Standards of Medical Care in Diabetes–2013. Diabetes Care (Suppl 1): S11–S66.
    1. NCQA (2008) Comprehensive Diabetes Care. HEDIS 2009 Volume 2 Technical Update. Available: . Accessed 14 May 2013.
    1. Tiv M, Viel JF, Mauny F, Eschwege E, Weill A, et al. (2012) Medication adherence in type 2 diabetes: the ENTRED study 2007, a French Population-Based Study. PLoS One [Epub] 7: e32412.
    1. Cramer JA (2004) A systematic review of adherence with medications for diabetes. Diabetes Care 27: 1218–1224.
    1. Krapek K, King K, Warren SS, George KG, Caputo DA, et al. (2004) Medication adherence and associated hemoglobin A1c in type 2 diabetes. Ann Pharmacother 38: 1357–62.
    1. Donnan PT, MacDonald TM, Morris AD (2002) Adherence to prescribed oral hypoglycaemic medication in a population of patients with type 2 diabetes: a retrospective cohort study. Diabet Med 19: 279–84.
    1. Lopez J, Bailey RA, Rupnow MFT, Annunziata K (2014) Characterization of Type 2 Diabetes Mellitus Burden by Age and Ethnic Groups Based on a Nationwide Survey. Clin Ther 36(4): 494–506.
    1. Long JA, Wong A, Medvedeva EL, Eisen SV, Gordon AJ, et al. (2014) Glucose control and medication adherence among veterans with diabetes and serious mental illness: does collocation of primary care and mental health care matter? Diabetes Care 37: 2261–2267.
    1. Arifulla M, John LJ, Sreedharan J, Muttappallymyalil J, Basha SA (2014) Patients' adherence to anti-diabetic medications in a hospital at Ajman, UAE. Malays J Med Sci 21: 44–49.
    1. Egede LE, Gebregziabher M, Hunt KJ, Axon RN, Echols C, et al. (2011) Regional, geographic, and racial/ethnic variation in glycemic control in a national sample of veterans with diabetes. Diabetes Care 34: 938–943.
    1. Rozenfeld Y, Hunt JS, Plauschinat C, Wong KS (2008) Oral antidiabetic medication adherence and glycemic control in managed care. Am J Manag Care 14: 71–75.
    1. Lawrence DB, Ragucci KR, Long LB, Parris BS, Helfer LA (2006) Relationship of oral antihyperglycemic (sulfonylurea or metformin) medication adherence and hemoglobin A1c goal attainment for HMO patients enrolled in a diabetes disease management program. J Manag Care Pharm 12: 466–471.
    1. Rhee MK, Slocum W, Ziemer DC, Culler SD, Cook CB, et al. (2005) Patient adherence improves glycemic control. Diabetes Educ 31: 240–250.
    1. Pladevall M, Williams LK, Potts LA, Divine G, Xi H, et al. (2004) Clinical outcomes and adherence to medications measured by claims data in patients with diabetes. Diabetes Care 27: 2800–2805.
    1. Guillausseau PJ (2003) Influence of oral antidiabetic drugs compliance on metabolic control in type 2 diabetes. A survey in general practice. Diabetes Metab 29: 79–81.
    1. Schectman JM, Nadkarni MM, Voss JD (2002) The association between diabetes metabolic control and drug adherence in an indigent population. Diabetes Care 25: 1015–1021.
    1. Asche C, LaFleur J, Conner C (2011) A review of diabetes treatment adherence and the association with clinical and economic outcomes. Clin Ther 33: 74–109.
    1. Gonzalez JS, Schneider HE (2011) Methodological issues in the assessment of diabetes treatment adherence. Curr Diab Rep 11: 472–479.
    1. Juarez DT, Sentell T, Tokumaru S, Goo R, Davis JW, et al. (2012) Factors Associated With Poor Glycemic Control or Wide Glycemic Variability Among Diabetes Patients in Hawaii, 2006–2009. Prev Chronic Dis 9: 120065.
    1. Khattab M, Khader YS, Al-Khawaldeh A, Ajlouni K (2010) Factors associated with poor glycemic control among patients with type 2 diabetes. J Diabetes Complications 24: 84–89.
    1. Duckworth WC, Abraira C, Moritz TE, Davis SN, Emanuele N, et al. (2011) The duration of diabetes affects the response to intensive glucose control in type 2 subjects: the VA Diabetes Trial. J Diabetes Complications 25: 355–361.
    1. Moreira ED Jr, Neves RC, Nunes ZO, de Almeida MC, Mendes AB, et al. (2010) Glycemic control and its correlates in patients with diabetes in Venezuela: results from a nationwide survey. Diabetes Res Clin Pract 87: 407–414.
    1. Rosen B, Porath A, Pawlson LG, Chassin MR, Benbassat J (2011) Adherence to standards of care by health maintenance organizations in Israel and the USA. Int J Qual Health Care 23: 15–25.
    1. Singer SR, Hoshen M, Shadmi E, Leibowitz M, Flaks-Manov N, et al. (2012) EMR-based medication adherence metric markedly enhances identification of nonadherent patients. Am J Manag Care [Epub] 18: e372–7.
    1. Nagrebetsky A, Griffin S, Kinmonth AL, Sutton S, Craven A, et al. (2012) Predictors of suboptimal glycaemic control in type 2 diabetes patients: the role of medication adherence and body mass index in the relationship between glycaemia and age. Diabetes Res Clin Pract 96: 119–128.
    1. Melmed S, Polonsky KS, Larsen PR, Kronenberg HM (2011) Williams Textbook of Endocrinology. 12th Edition. Philadelphia: Elsevier Saunders.
    1. Cohen HW, Shmukler C, Ullman R, Rivera CM, Walker EA (2010) Measurements of medication adherence in diabetic patients with poorly controlled HbA(1c). Diabet Med 27: 210–216.
    1. Choudry NK, Shrank WH, Levin RL, Lee JL, Jan SA, et al. (2009) Measuring Concurrent Adherence to Multiple Related Medications. Am J Manag Care 15: 457–464.

Source: PubMed

3
Suscribir