Review: Detection and quantification of proteins in human urine

Sultan Aitekenov, Abduzhappar Gaipov, Rostislav Bukasov, Sultan Aitekenov, Abduzhappar Gaipov, Rostislav Bukasov

Abstract

Extensive medical research showed that patients, with high protein concentration in urine, have various kinds of kidney diseases, referred to as proteinuria. Urinary protein biomarkers are useful for diagnosis of many health conditions - kidney and cardio vascular diseases, cancers, diabetes, infections. This review focuses on the instrumental quantification (electrophoresis, chromatography, immunoassays, mass spectrometry, fluorescence spectroscopy, the infrared spectroscopy, and Raman spectroscopy) of proteins (the most of all albumin) in human urine matrix. Different techniques provide unique information on what constituents of the urine are. Due to complex nature of urine, a separation step by electrophoresis or chromatography are often used for proteomics study of urine. Mass spectrometry is a powerful tool for the discovery and the analysis of biomarkers in urine, however, costs of the analysis are high, especially for quantitative analysis. Immunoassays, which often come with fluorescence detection, are major qualitative and quantitative tools in clinical analysis. While Infrared and Raman spectroscopies do not give extensive information about urine, they could become important tools for the routine clinical diagnostics of kidney problems, due to rapidness and low-cost. Thus, it is important to review all the applicable techniques and methods related to urine analysis. In this review, a brief overview of each technique's principle is introduced. Where applicable, research papers about protein determination in urine are summarized with the main figures of merits, such as the limit of detection, the detectable range, recovery and accuracy, when available.

Keywords: Biomarkers; Fluorescence spectroscopy; Human serum albumin; Immunoassays; Mass spectrometry; Urine proteomics.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Diagram of the GELFrEE device [68]. A gel column is utilized to achieve electrophoretic separation of proteins, analogous to SDS–PAGE, which are then eluted into the liquid-phase for manual collection. The fractionation can then be visualized by running a portion of the fractions on a SDS–PAGE gel. Reprinted from Refs. [95].
Fig. 2
Fig. 2
Schematic diagram for the competitive immunoassays. Reprinted from Ref. [109].
Fig. 3
Fig. 3
Schematic diagram for the non-competitive immunoassay. Reprinted from Ref. [109].
Fig. 4
Fig. 4
Schematic of graphene oxide-mediated fluorescence quenching aptasensor for the detection of albuminuria in urine and HSA in human serum. When albumin was added to the complex GO with the fluorescence-labeled aptamer, the aptamer detached from the complex to bind albumin, which resulted by an increase in fluorescence intensity. Reprinted from Refs. [132].
Fig. 5
Fig. 5
Raman spectra of PD patient urine and spent dialysate.(A) Averaged, baselined, and vector normalized Raman spectra from 362 urine specimens obtained from patients receiving PD therapy for ESKD. (B) Averaged, baselined, and vector normalized Raman spectra from 395 spent PD dialysate specimens. Reprinted from Ref. [164].

References

    1. Naderi A.S.A., Reilly R.F. Primary care approach to proteinuria. J. Am. Board Fam. Med. 2008;21:569–574.
    1. Huang Y., Yang X., Zhang Y., Yue S., Mei X., Bi L., Zhai W., Ren X., Ding Y., Zhang S., Deng Z., Sun Y. Correlation of urine protein/creatinine ratios to 24-h urinary protein for quantitating proteinuria in children. Pediatr. Nephrol. 2020;35:463–468.
    1. Kamińska J., Dymicka-Piekarska V., Tomaszewska J., Matowicka-Karna J., Koper-Lenkiewicz O.M. Diagnostic utility of protein to creatinine ratio (P/C ratio) in spot urine sample within routine clinical practice. Crit. Rev. Clin. Lab Sci. 2020:1–20.
    1. Mahoney E., Kun J., Smieja M., Fang Q. Review—point-of-Care urinalysis with emerging sensing and imaging technologies. J. Electrochem. Soc. 2019;167
    1. Premasiri W.R., Clarke R.H., Womble M.E. Urine analysis by laser Raman spectroscopy. Laser Surg. Med. 2001;28:330–334.
    1. Machii R., Kubota R., Hiratsuka N., Sugimoto K., Masudo R., Kurihara Y., Kobayashi S., Shiba K. Urinary protein fraction in healthy subjects using cellulose acetate membrane electrophoresis followed by colloidal silver staining. J. Clin. Lab. Anal. 2004;18:231–236.
    1. Simerville J.A., Maxted W.C., Pahira J.J. Urinalysis: a comprehensive review. Am. Fam. Physician. 2005;71:1153–1162.
    1. Viberti G.C., Jarrett R.J., Mahmud U., Hill R.D., Argyropoulos A., Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet. 1982;319:1430–1432.
    1. Lambers Heerspink H.J., Brinkman J.W., Bakker S.J., Gansevoort R.T., de Zeeuw D. Update on microalbuminuria as a biomarker in renal and cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 2006;15:631–636.
    1. Miller W.G., Bruns D.E., Hortin G.L., Sandberg S., Aakre K.M., McQueen M.J., Itoh Y., Lieske J.C., Seccombe D.W., Jones G., Bunk D.M., Curhan G.C., Narva A.S. Current issues in measurement and reporting of urinary albumin excretion. Clin. Chem. 2009;55:24–38.
    1. Gopalan G., Rao V., Kakkar V. An overview of urinary proteomics applications in human diseases. IJHTS. 2010;I:183–192.
    1. Marimuthu A., O'Meally RobertN., Chaerkady R., Subbannayya Y., Nanjappa V., Kumar P., Kelkar D.S., Pinto S.M., Sharma R., Renuse S., Goel R., Christopher R., Delanghe B., Cole RobertN., Harsha H.C., Pandey A. A comprehensive map of the human urinary proteome. J. Proteome Res. 2011;10:2734–2743.
    1. Santucci L., Candiano G., Petretto A., Bruschi M., Lavarello C., Inglese E., Righetti P.G., Ghiggeri G.M. From hundreds to thousands: widening the normal human Urinome (1) Journal of Proteomics. 2015;112:53–62.
    1. Röthlisberger S., Pedroza-Diaz J. Urine protein biomarkers for detection of cardiovascular disease and their use for the clinic. Expet Rev. Proteonomics. 2017;14:1091–1103.
    1. Kyle R.A., Steensma D.P. In: Multiple Myeloma. Moehler T., Goldschmidt H., editors. Springer; Berlin, Heidelberg: 2011. History of multiple myeloma; pp. 3–23.
    1. Kutwin P., Konecki T., Borkowska E.M., Traczyk-Borszynska M., Jablonowski Z. CEJU; 2018. Urine miRNA as a Potential Biomarker for Bladder Cancer Detection – a Meta-Analysis.
    1. Carroll M.F., Temte J.L. Proteinuria in adults: a diagnostic approach. Am. Fam. Physician. 2000;62:1333–1340.
    1. Wingo C.S., L W. Clapp, Proteinuria: potential causes and approach to evaluation. Am. J. Med. Sci. 2000;320:188–194.
    1. E B., R G., P F.-S., E M., M B. Classification of renal proteinuria: a simple algorithm. Clin. Chem. Lab. Med. 2002;40:1143–1150.
    1. D'Amico G., Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–825.
    1. Huart J., Bouquegneau A., Lutteri L., Erpicum P., Grosch S., Resimont G., Wiesen P., Bovy C., Krzesinski J.-M., Thys M., Lambermont B., Misset B., Pottel H., Mariat C., Cavalier E., Burtey S., Jouret F., Delanaye P. 2020. Proteinuria in COVID-19: Prevalence, Characterization and Prognostic Role.
    1. Chaparro A.I., Mitchell C.D., Abitbol C.L., Wilkinson J.D., Baldarrago G., Lopez E., Zilleruelo G. Proteinuria in children infected with the human immunodeficiency virus. J. Pediatr. 2008;152:844–849.
    1. Leung A.K.C., Wong A.H.C., Barg S.S.N. Proteinuria in children: evaluation and differential diagnosis. Am. Fam. Physician. 2017;95:248–254.
    1. Toblli J.E., Bevione P., Di Gennaro F., Madalena L., Cao G., Angerosa M. Understanding the mechanisms of proteinuria: therapeutic implications. International Journal of Nephrology. 2012
    1. Webster A.C., Nagler E.V., Morton R.L., Masson P. Chronic kidney disease. Lancet. 2017;389:1238–1252.
    1. Fassett R.G., Venuthurupalli S.K., Gobe G.C., Coombes J.S., Cooper M.A., Hoy W.E. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80:806–821.
    1. Bidin M.Z., Shah A.M., Stanslas J., Seong C.L.T. Blood and urine biomarkers in chronic kidney disease: an update. Clin. Chim. Acta. 2019;495:239–250.
    1. Coresh J., Astor B.C., Greene T., Eknoyan G., Levey A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am. J. Kidney Dis. 2003;41:1–12.
    1. Zhang Q.-L., Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Publ. Health. 2008;8:117.
    1. Wei H., Yan Y., Gong J., Dong J. Prevalence of kidney damage in Chinese elderly: a large-scale population-based study. BMC Nephrol. 2019;20:341.
    1. He K., Saran R. Chapter 3: morbidity and mortality in patients with CKD. Am. J. Kidney Dis. 2017;69:S67–S92.
    1. Murray C. 1990–2013: a Systematic Analysis for the Global Burden of Disease Study 2013, the Lancet. vol. 385. 2015. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death; pp. 117–171.
    1. Albalat A., Mischak H., Mullen W. Prilozi; 2011. Urine Proteomics in Clinical Applications: Technologies, Principal Considerations and Clinical Implementation.
    1. Theodorescu D., Wittke S., Ross M.M., Walden M., Conaway M., Just I., Mischak H., Frierson H.F. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol. 2006;7:230–240.
    1. Bhasin A., Sanders E.C., Ziegler J.M., Briggs J.S., Drago N.P., Attar A.M., Santos A.M., True M.Y., Ogata A.F., Yoon D.V., Majumdar S., Wheat A.J., Patterson S.V., Weiss G.A., Penner R.M. Virus bioresistor (VBR) for detection of bladder cancer marker DJ-1 in urine at 10 pM in one minute. Anal. Chem. 2020;92:6654–6666.
    1. Zhang W., Zhang X.J., Chao S.Y., Chen S.J., Zhang Z.J., Zhao J., Lv Y.N., Yao J.J., Bai Y.Y. Update on urine as a biomarker in cancer: a necessary review of an old story. Expert Rev. Mol. Diagn. 2020;20:477–488.
    1. Zimmerli L.U., Schiffer E., Zürbig P., Good D.M., Kellmann M., Mouls L., Pitt A.R., Coon J.J., Schmieder R.E., Peter K.H., Mischak H., Kolch W., Delles C., Dominiczak A.F. Urinary proteomic biomarkers in coronary artery disease. Mol. Cell. Proteomics. 2008;7:290–298.
    1. Rossing K., Mischak H., Dakna M., Zürbig P., Novak J., Julian B.A., Good D.M., Coon J.J., Tarnow L., Rossing P. Urinary proteomics in diabetes and CKD. J. Am. Soc. Nephrol. 2008;19:1283–1290.
    1. Raja P., Maxwell A.P., Brazil D.P. Cardiovasc Drugs Ther; 2020. The Potential of Albuminuria as a Biomarker of Diabetic Complications.
    1. Yang W., Yang D., Gong S., Dong X., Liu L., Yu S., Zhang X., Ge S., Wang D., Xia N., Yu D., Qiu X. An immunoassay cassette with a handheld reader for HIV urine testing in point-of-care diagnostics. Biomed. Microdevices. 2020;22
    1. Robles M.T.S., Cantalupo P.G., Duray A.M., Freeland M., Murkowski M., van Bokhoven A., Stephens Shields A.J., Pipas J.M., Imperiale M.J. Analysis of viruses present in urine from patients with interstitial cystitis. Virus Gene. 2020;56:430–438.
    1. Bui T.T., Moi M.L., Morita K., Hasebe F. Development of universal and lineage-specific primer sets for rapid detection of the Zika virus (ZIKV) in blood and urine samples using one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) Jpn. J. Infect. Dis. 2020;73:153–156.
    1. Lu T., Han Y., Zhang R., Zhang K., Lin G., Li J. Quantitative detection of hepatitis C virus RNA in urine of patients with chronic hepatitis C using a novel real-time PCR assay. J. Med. Virol. 2019;91:115–123.
    1. Marhash A., Al-Mayah Q., Al-Kazaaly E. Detection and phylogenetic analysis of human papilloma virus in urine from a sample of Iraqi women with vaginal discharge. J. Pure Appl. Microbiol. 2018;12:2183–2192.
    1. Niedrig M., Patel P., El Wahed A.A., Schädler R., Yactayo S. Find the right sample: a study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infect. Dis. 2018;18:707.
    1. Wu X. Urinalysis: a review of methods and procedures. Crit. Care Nurs. Clin. 2010;22:121–128.
    1. Brunzel N.A. Elsevier/Saunders; St. Louis, Mo.: 2013. Fundamentals of Urine and Body Fluid Analysis.
    1. Remer T., Montenegro-Bethancourt G., Shi L. Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives. Clin. Biochem. 2014;47:307–311.
    1. Pieri M., Pignalosa S., Dinallo V., Crisanti A., Casalino P., Bernardini S., Dessi M., Rossella Z. Free light chains nephelometric assay: human urine stability in different storage conditions. Clin. Chem. Lab. Med. 2016;54:e273–e274.
    1. Moyle P.S., Specht A., Hill R. Effect of common storage temperatures and container types on urine protein : creatinine ratios in urine samples of proteinuric dogs. J. Vet. Intern. Med. 2018;32:1652–1658.
    1. Matsumoto K., Funaba M. Comparison of various methods for the determination of total protein in urine. Clin. Chem. Lab. Med. 2006:44.
    1. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275.
    1. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254.
    1. Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985;150:76–85.
    1. Watanabe N., Kamei S., Ohkubo A., Yamanaka M., Ohsawa S., Makino K., Tokuda K. Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin. Chem. 1986;32:1551–1554.
    1. Viswanathan G., Upadhyay A. Assessment of proteinuria. Adv. Chron. Kidney Dis. 2011;18:243–248.
    1. Oyaert M., Delanghe J.R. Semiquantitative, fully automated urine test strip analysis. J. Clin. Lab. Anal. 2019;33
    1. Bu X., Regalado E.L., Hamilton S.E., Welch C.J. The emergence of low-cost compact mass spectrometry detectors for chromatographic analysis. Trac. Trends Anal. Chem. 2016;82:22–34.
    1. Kalantari S., Jafari A., Moradpoor R., Ghasemi E., Khalkhal E. Human urine proteomics: analytical techniques and clinical applications in renal diseases. International Journal of Proteomics. 2015
    1. Decramer S., de Peredo A.G., Breuil B., Mischak H., Monsarrat B., Bascands J.-L., Schanstra J.P. Urine in clinical proteomics. Mol. Cell. Proteomics. 2008;7:1850–1862.
    1. Jiang X., Feng S., Tian R., Han G., Jiang X., Ye M., Zou H. Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome analysis by using a strong cation exchange trap column. Proteomics. 2007;7:528–539.
    1. Valle R.D., Mora J.M.C., Martín N.L.C.S., Pérez L.H., Torres M.E.L., Cisneros R.L., Ramos R.P.O., Rodríguez A.M., Álvarez I.V. An enzyme immunoassay for determining albumin in human urine samples using an ultra-microanalytical system. J. Immunoassay Immunochem. 2020;41:896–912.
    1. Righetti P.G. Electrophoresis: the march of pennies, the march of dimes. J. Chromatogr. A. 2005;1079:24–40.
    1. Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019) Electrophoresis. 2020;41:10–35.
    1. Aguzzi F., Gasparro C., Bergami M.R., Merlini M. High-sensitivity electrophoretic method for the detection of bence Jones protein and for the study of proteinuria in unconcentrated urines. Ann. Clin. Biochem. 1993;30:287–292.
    1. Giovannoli C., Anfossi L., Baggiani C., Giraudi G. A novel approach for a non competitive capillary electrophoresis immunoassay with laser-induced fluorescence detection for the determination of human serum albumin. J. Chromatogr. A. 2007;1155:187–192.
    1. Jia J., Pan J., Xu H., Wang S., Bai B. Urine protein quantification in stacking gel by SDS-PAGE. Electrophoresis. 2019;40:487–490.
    1. Tran J.C., Doucette A.A. Gel-eluted liquid fraction entrapment Electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal. Chem. 2008;80:1568–1573.
    1. Kartsova L.A., Bessonova E.A. Preconcentration techniques in capillary electrophoresis. J. Anal. Chem. 2009;64:326–337.
    1. Bessonova E.A., Kartsova L.A., Shmukov A.U. Electrophoretic determination of albumin in urine using on-line concentration techniques. J. Chromatogr. A. 2007;1150:332–338.
    1. Wittke S., Fliser D., Haubitz M., Bartel S., Krebs R., Hausadel F., Hillmann M., Golovko I., Koester P., Haller H., Kaiser T., Mischak H., Weissinger E.M. Determination of peptides and proteins in human urine with capillary electrophoresis–mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J. Chromatogr. A. 2003;1:173–181.
    1. Kiprijanovska S., Stavridis S., Stankov O., Komina S., Petrusevska G., Polenakovic M., Davalieva K. Mapping and identification of the urine proteome of prostate cancer patients by 2D PAGE/MS. International Journal of Proteomics. 2014;2014
    1. Nakayama A., Kubota R., Sakatsume M., Suzuki H., Katayama A., Kanamori K., Shiba K., Iijima S. Cellulose acetate membrane electrophoresis based urinary proteomics for the identification of characteristic proteins: CAME-based urinary proteomics. J. Clin. Lab. Anal. 2016;30:359–367.
    1. Zoccali M., Tranchida P.Q., Mondello L. Fast gas chromatography-mass spectrometry: a review of the last decade. Trac. Trends Anal. Chem. 2019;118:444–452.
    1. Rigano F., Tranchida P.Q., Dugo P., Mondello L. High-performance liquid chromatography combined with electron ionization mass spectrometry: a review. Trac. Trends Anal. Chem. 2019;118:112–122.
    1. Ishida J., Abe K., Nakamura M., Yamaguchi M. High-performance liquid chromatographic determination of human serum albumin in plasma and urine by post-column fluorescence enhancement detection using 8-Anilino-1-naphthalenesulfonic acid. Biol. Pharm. Bull. 1996;19:1391–1395.
    1. Lizana J., Hellsing K. Manual immunonephelometric assay of proteins, with use of polymer enhancement. Clin. Chem. 1974;20:1181–1186.
    1. Brinkman J.W., Bakker S.J.L., Gansevoort R.T., Hillege H.L., Kema I.P., Gans R.O.B., De Jong P.E., De Zeeuw D. Which method for quantifying urinary albumin excretion gives what outcome? A comparison of immunonephelometry with HPLC. Kidney Int. 2004;66:S69–S75.
    1. Comper W.D., Jerums G., Osicka T.M. Differences in urinary albumin detected by four immunoassays and high-performance liquid chromatography. Clin. Biochem. 2004;37:105–111.
    1. Owen W.E., Roberts W.L. Performance characteristics of an HPLC assay for urinary albumin. Am. J. Clin. Pathol. 2005;124:219–225.
    1. Singh R., Crow F.W., Babic N., Lutz W.H., Lieske J.C., Larson T.S., Kumar R. A liquid chromatography-mass spectrometry method for the quantification of urinary albumin using a novel 15N-isotopically labeled albumin internal standard. Clin. Chem. 2007;53:540–542.
    1. Hancu G., Simon B., Rusu A., Mircia E., Gyéresi Á. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis. Adv. Pharmaceut. Bull. 2013;3:1–8.
    1. Glavač N.K., Injac R., Kreft S. Optimization and validation of a capillary MEKC method for determination of proteins in urine. Chroma. 2009;70:1473–1478.
    1. Wu Y.-W., Liu J.-F., Xiao T.-X., Han D.-Y., Zhang H.-L., Pan J.-C. Field-amplified sample injection for the determination of albumin and transferrin in human urines by MEKC. Electrophoresis. 2009;30:668–673.
    1. Jaffuel A., Lemoine J., Aubert C., Simon R., Léonard J.-F., Gautier J.-C., Pasquier O., Salvador A. Optimization of liquid chromatography–multiple reaction monitoring cubed mass spectrometry assay for protein quantification: application to aquaporin-2 water channel in human urine. J. Chromatogr. A. 2013;1301:122–130.
    1. Dajani S., Saripalli A., Sharma-Walia N. Water transport proteins–aquaporins (AQPs) in cancer biology. Oncotarget. 2018;9:36392–36405.
    1. Nováková L., Vlčková H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal. Chim. Acta. 2009;656:8–35.
    1. Akimoto M., Hokazono E., Ota E., Tateishi T., Kayamori Y. Highly sensitive reversed-phase high-performance liquid chromatography assay for the detection of Tamm–Horsfall protein in human urine. Ann. Clin. Biochem. 2016 Jan;53(Pt. 1):75–84. doi: 10.1177/0004563215583698.
    1. Gao H., Liu J.-J., Liu Y.-Q., Wu Z.-Y. Detection of urine protein by a paper-based analytical device enhanced with ion concentration polarization effect. Microfluid. Nanofluidics. 2019;23:51.
    1. Alharbi R.A. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi J. Biol. Sci. 2020;27:968–974.
    1. Nicolescu T.O. Mass Spectrometry; 2017. Interpretation of Mass Spectra.
    1. Ho C., Lam C., Chan M., Cheung R., Law L., Lit L., Ng K., Suen M., Tai H. Electrospray ionisation mass spectrometry: principles and clinical applications. Clin. Biochem. Rev. 2003;24:3–12.
    1. Hillenkamp F., Karas M., Beavis R.C., Chait B.T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 1991;63:1193A–1203A.
    1. Protein Analysis by Shotgun/Bottom-Up Proteomics | Chemical Reviews, (n.d.).
    1. Catherman A.D., Skinner O.S., Kelleher N.L. Top down proteomics: facts and perspectives. Biochem. Biophys. Res. Commun. 2014;445:683–693.
    1. Ryan D.J., Spraggins J.M., Caprioli R.M. Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Curr. Opin. Chem. Biol. 2019;48:64–72.
    1. Noble W., Serang O. A review of statistical methods for protein identification using tandem mass spectrometry. Stat. Interface. 2012;5:3–20.
    1. Nikolov M., Schmidt C., Urlaub H. In: Quantitative Methods in Proteomics. Marcus K., editor. Humana Press; Totowa, NJ: 2012. Quantitative mass spectrometry-based proteomics: an overview; pp. 85–100.
    1. Urban P.L. Quantitative mass spectrometry: an overview. Phil. Trans. Math. Phys. Eng. Sci. 2016;374:20150382.
    1. Grebe S.K.G., Singh R.J. Clinical peptide and protein quantification by mass spectrometry (MS) Trac. Trends Anal. Chem. 2016;84:131–143.
    1. Chen Y.-T., Chen H.-W., Domanski D., Smith D.S., Liang K.-H., Wu C.-C., Chen C.-L., Chung T., Chen M.-C., Chang Y.-S., Parker C.E., Borchers C.H., Yu J.-S. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. Journal of Proteomics. 2012;75:3529–3545.
    1. Bachmann L.M., Nilsson G., Bruns D.E., McQueen M.J., Lieske J.C., Zakowski J.J., Miller W.G. State of the art for measurement of urine albumin: comparison of routine measurement procedures to isotope dilution tandem mass spectrometry. Clin. Chem. 2014;60:471–480.
    1. Lieske J.C., Bondar O., Miller W.G., Bachmann L.M., Narva A.S., Itoh Y., Zegers I., Schimmel H., Phinney K., Bunk D.M. A reference system for urinary albumin: current status. Clin. Chem. Lab. Med. 2013;51:981–989.
    1. Denoroy L., Zimmer L., Renaud B., Parrot S. Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: a review. J. Chromatogr. B. 2013;927:37–53.
    1. Hawkridge A.M. Quantitative Proteomics. 2014. CHAPTER 1:practical considerations and current limitations in quantitative mass spectrometry-based proteomics; pp. 1–25.
    1. Slagle K.M., Ghosn S.J. Immunoassays: tools for sensitive, specific, and accurate test results. Lab. Med. 1996;27:177–183.
    1. Kapingidza A.B., Kowal K., Chruszcz M. In: Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and Other Body Fluid Proteins. Hoeger U., Harris J.R., editors. Springer International Publishing; Cham: 2020. Antigen–antibody complexes; pp. 465–497.
    1. Findlay J.W.A., Smith W.C., Lee J.W., Nordblom G.D., Das I., DeSilva B.S., Khan M.N., Bowsher R.R. Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J. Pharmaceut. Biomed. Anal. 2000;21:1249–1273.
    1. Darwish I.A. Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int. J. Biomed. Sci. 2006;2:217–235.
    1. Zhao S., Zhang Y., Ding S., Fan J., Luo Z., Liu K., Shi Q., Liu W., Zang G. A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. J. Electroanal. Chem. 2019:33–42.
    1. Shaikh A., Seegmiller J.C., Borland T.M., Burns B.E., Ladwig P.M., Singh R.J., Kumar R., Larson T.S., Lieske J.C. Comparison between immunoturbidimetry, size-exclusion chromatography, and LC-MS to quantify urinary albumin. Clin. Chem. 2008;54:1504–1510.
    1. Hoofnagle A.N., Wener M.H. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J. Immunol. Methods. 2009;347:3–11.
    1. Chavers B.M., Simonson J., Michael A.F. A solid phase fluorescent immunoassay for the measurement of human urinary albumin. Kidney Int. 1984;25:576–578.
    1. Lloyd D.R., Hindle E.J., Marples J., Gatt J.A. Urinary albumin measurement by immunoturbidimetry. Ann. Clin. Biochem.: An International Journal of Biochemistry and Laboratory Medicine. 1987;24:209–210.
    1. Marre M., Claudel J.P., Ciret P., Luis N., Suarez L., Passa P. Laser immunonephelometry for routine quantification of urinary albumin excretion. Clin. Chem. 1987;33:209–213.
    1. Bakker A.J. Immunoturbidimetry of urinary albumin: prevention of adsorption of albumin; influence of other urinary constituents. Clin. Chem. 1988;34:82–86.
    1. Horton J.K., Davies M., Woodhead J.S., Weeks I. A rapid and sensitive method for estimating low concentrations of albumin in human urine. Clin. Chim. Acta. 1989;186:45–51.
    1. Qin Q.-P., Peltola O., Pettersson K. Time-resolved fluorescence resonance energy transfer assay for point-of-care testing of urinary albumin. Clin. Chem. 2003;49:1105–1113.
    1. Zhao L., Lin J.-M., Li Z. Comparison and development of two different solid phase chemiluminescence ELISA for the determination of albumin in urine. Anal. Chim. Acta. 2005;541:197–205.
    1. Lu M., Ibraimi F., Kriz D., Kriz K. A combination of magnetic permeability detection with nanometer-scaled superparamagnetic tracer and its application for one-step detection of human urinary albumin in undiluted urine. Biosens. Bioelectron. 2006;21:2248–2254.
    1. Ning G., Lu-Yan W., Wei-Min X., Tian-Hua L., Qian-Li J. Electrochemical immuno-biosensor for the rapid determination of nuclear matrix protein 22 (NMP22) antigen in urine samples by Co(III) phthlocyanine/Fe3O4/Au collide coimmobilized electrode. Chin. J. Anal. Chem. 2007;35:1553–1558.
    1. Jiang Z., Huang Y., Liang A., Pan H., Liu Q. Resonance scattering detection of trace microalbumin using immunonanogold probe as the catalyst of Fehling reagent–glucose reaction. Biosens. Bioelectron. 2009;24:1674–1678.
    1. Tu M.-C., Chang Y.-T., Kang Y.-T., Chang H.-Y., Chang P., Yew T.-R. A quantum dot-based optical immunosensor for human serum albumin detection. Biosens. Bioelectron. 2012;34:286–290.
    1. Wang R.E., Tian L., Chang Y.-H. A homogeneous fluorescent sensor for human serum albumin. J. Pharmaceut. Biomed. Anal. 2012;63:165–169.
    1. Zangheri M., Di Nardo F., Mirasoli M., Anfossi L., Nascetti A., Caputo D., De Cesare G., Guardigli M., Baggiani C., Roda A. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Anal. Bioanal. Chem. 2016;408:8869–8879.
    1. Giannetto M., Bianchi M.V., Mattarozzi M., Careri M. Competitive amperometric immunosensor for determination of p53 protein in urine with carbon nanotubes/gold nanoparticles screen-printed electrodes: a potential rapid and noninvasive screening tool for early diagnosis of urinary tract carcinoma. Anal. Chim. Acta. 2017;991:133–141.
    1. Theansun W., Sripratumporn J., Promptmas C. Determination of albumin in urine by a quartz crystal microbalance label-free assay. Anal. Lett. 2017;50:1912–1925.
    1. Liu Y., Liu Y.H., Bei W.J., Wang K., Cui T.T., Li H.L., Wu D.X., Chen S.Q., Tan N., Chen J.Y. A dual-label time-resolved fluorescence immunoassay for the simultaneous determination of cystatin C and β2-microglobulin in urine. Br. J. Biomed. Sci. 2017;74:193–197.
    1. Nakagawa M., Karashima T., Kamada M., Yoshida E., Yoshimura T., Nojima M., Inoue K., Shuin T., Seiki M., Koshikawa N. Development of a fully automated chemiluminescence immunoassay for urine monomeric laminin-γ2 as a promising diagnostic tool of non-muscle invasive bladder cancer. Biomarker Research. 2017;5:29.
    1. Semeradtova A., Stofik M., Vankova L., Maly P., Stanek O., Maly J. Optical microchips based on high-affinity recombinant protein binders—human serum albumin detection in urine. Sensor. Actuator. B Chem. 2018;272:441–447.
    1. Arya S.K., Estrela P. Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine. Biosens. Bioelectron. 2018;117:620–627.
    1. Chawjiraphan W., Apiwat C., Segkhoonthod K., Treerattrakoon K., Pinpradup P., Sathirapongsasuti N., Pongprayoon P., Luksirikul P., Isarankura-Na-Ayudhya P., Japrung D. Sensitive detection of albuminuria by graphene oxide-mediated fluorescence quenching aptasensor. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020;231:118128.
    1. Gomes A.J., Lunardi C.N., Rocha F.S., Patience G.S. Experimental methods in chemical engineering: fluorescence emission spectroscopy. Can. J. Chem. Eng. 2019;97:2168–2175.
    1. Rye H.S., Dabora J.M., Quesada M.A., Mathies R.A., Glazer A.N. Fluorometric assay using dimeric dyes for double- and single-stranded DNA and RNA with picogram sensitivity. Anal. Biochem. 1993;208:144–150.
    1. Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., Nitschke R., Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 2008;5:763–775.
    1. Petryayeva E., Algar W.R., Medintz I.L. Applied Spectroscopy; 2013. Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging.
    1. Xu Z., Yang W., Dong C. Determination of human serum albumin using an intramolecular charge transfer fluorescence probe: 4′-Dimethylamino-2,5-dihydroxychalcone. Bioorg. Med. Chem. Lett. 2005;15:4091–4096.
    1. Hou X., Tong X., Dong W., Dong C., Shuang S. Synchronous fluorescence determination of human serum albumin with methyl blue as a fluorescence probe. Spectrochim. Acta Mol. Biomol. Spectrosc. 2007;66:552–556.
    1. Cui F., Qin L., Li F., Luo H. Synchronous fluorescence determination and molecular modeling of 5-Aminosalicylic acid (5-ASA) interacted with human serum albumin. J. Mol. Model. 2008;14:1111–1117.
    1. Zhu C., Liu M., Wang P., Cao M., Cao C. Determination of albumin using CdS/SiO 2 core/shell nanoparticles as fluorescence probes. Chin. J. Chem. 2009;27:1820–1826.
    1. Liu X., Wu X., Yang J. Protein determination using methylene blue in a synchronous fluorescence technique. Talanta. 2010;81:760–765.
    1. Ramezani A.M., Manzoori J.L., Amjadi M., Jouyban A. Spectrofluorimetric determination of human serum albumin using terbium-danofloxacin probe. Sci. World J. 2012:1–9.
    1. Madrakian T., Bagheri H., Afkhami A. Determination of human albumin in serum and urine samples by constant‐energy synchronous fluorescence method. Luminescence. 2015;30:576–582.
    1. Li H., Yao Q., Fan J., Du J., Wang J., Peng X. An NIR fluorescent probe of uric HSA for renal diseases warning. Dyes Pigments. 2016;133:79–85.
    1. Chen M., Xiang X., Wu K., He H., Chen H., Ma C. A novel detection method of human serum albumin based on the poly(thymine)-templated copper nanoparticles. Sensors. 2017;17:2684.
    1. Gui W., Chen X., Ma Q. A novel detection method of human serum albumin based on CuInZnS quantum dots-Co2+ sensing system. Anal. Bioanal. Chem. 2017;409:3871–3876.
    1. Rajasekhar K., Achar C.J., Govindaraju T. A red-NIR emissive probe for the selective detection of albumin in urine samples and live cells. Org. Biomol. Chem. 2017;15:1584–1588.
    1. Stuart B. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd; 2005. Introduction; pp. 1–13.
    1. Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007;1767:1073–1101.
    1. Yang D., Ying Y. Applications of Raman spectroscopy in agricultural products and food analysis: a review. Appl. Spectrosc. Rev. 2011;46:539–560.
    1. López-Lorente Á.I., Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal. Bioanal. Chem. 2016;408:2875–2889.
    1. Glassford S.E., Byrne B., Kazarian S.G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Biophys. Acta Protein Proteonomics. 2013;1834:2849–2858.
    1. Lane L.A., Qian X., Nie S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 2015;115:10489–10529.
    1. Pilot R., Signorini R., Durante C., Orian L., Bhamidipati M., Fabris L. A review on surface-enhanced Raman scattering. Biosensors. 2019;9:57.
    1. Sharma B., Frontiera R.R., Henry A.-I., Ringe E., Van Duyne R.P. SERS: materials, applications, and the future. Mater. Today. 2012;15:16–25.
    1. Nie S., Emory S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–1106.
    1. Ataka K., Heberle J. Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal. Bioanal. Chem. 2007;388:47–54.
    1. Jessen T.E., Höskuldsson A.T., Bjerrum P.J., Verder H., Sørensen L., Bratholm P.S., Christensen B., Jensen L.S., Jensen M.A.B. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents. Clin. Biochem. 2014;47:1306–1312.
    1. Ma X.-X., Wang C.-C., Cai W.-S., Shao X.-G. Quantification of albumin in urine using preconcentration and near-infrared diffuse reflectance spectroscopy. Chin. Chem. Lett. 2016;27:1597–1601.
    1. Hall J.W., Pollard A. Near-infrared spectroscopic determination of serum total proteins, albumin, globulins, and urea. Clin. Biochem. 1993;26:483–490.
    1. Pezzaniti J.L., Jeng T.-W., McDowell L., Oosta G.M. Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine. Clin. Biochem. 2001;34:239–246.
    1. Bispo J.A.M., de Sousa Vieira E.E., Silveira L., Fernandes A.B. Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis. J. Biomed. Optic. 2013;18
    1. de Almeida M.L., Saatkamp C.J., Fernandes A.B., Pinheiro A.L.B., Silveira L. Estimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopy. Laser Med. Sci. 2016;31:1415–1423.
    1. Senger R.S., Sullivan M., Gouldin A., Lundgren S., Merrifield K., Steen C., Baker E., Vu T., Agnor B., Martinez G., Coogan H., Carswell W., Kavuru V., Karageorge L., Dev D., Du P., Sklar A., Pirkle J., Guelich S., Orlando G., et al. Spectral characteristics of urine from patients with end-stage kidney disease analyzed using Raman Chemometric Urinalysis (Rametrix) PloS One. 2020;15
    1. Chamuah N., Saikia A., Joseph A.M., Nath P. Blu-ray DVD as SERS substrate for reliable detection of albumin, creatinine and urea in urine. Sensor. Actuator. B Chem. 2019;285:108–115.
    1. Dou X., Yamaguchi Y., Yamamoto H., Doi S., Ozaki Y. Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer. Vib. Spectrosc. 1996;13:83–89.
    1. Gaipov A., Utegulov Z., Bukasov R., Turebekov D., Tarlykov P., Markhametova Z., Nurekeyev Z., Kunushpayeva Z., Sultangaziyev A. Development and validation of hybrid Brillouin-Raman spectroscopy for non-contact assessment of mechano-chemical properties of urine proteins as biomarkers of kidney diseases. BMC Nephrol. 2020;21:229.
    1. Zhu W., Wen B.-Y., Jie L.-J., Tian X.-D., Yang Z.-L., Radjenovic P.M., Luo S.-Y., Tian Z.-Q., Li J.-F. Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer. Biosens. Bioelectron. 2020;154:112067.
    1. Saah A.J., Hoover D.R. “Sensitivity” and “specificity” reconsidered: the meaning of these terms in analytical and diagnostic settings. Ann. Intern. Med. 1997;126:91–94.
    1. Mahmood T., Yang P.-C. Western blot: technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012;4:429–434.
    1. Radon T.P., Massat N.J., Jones R., Alrawashdeh W., Dumartin L., Ennis D., Duffy S.W., Kocher H.M., Pereira S.P., Guarner posthumous L., Murta-Nascimento C., Real F.X., Malats N., Neoptolemos J., Costello E., Greenhalf W., Lemoine N.R., Crnogorac-Jurcevic T. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin. Canc. Res. 2015;21:3512–3521.
    1. Fujita K., Kume H., Matsuzaki K., Kawashima A., Ujike T., Nagahara A., Uemura M., Miyagawa Y., Tomonaga T., Nonomura N. Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer. Sci. Rep. 2017;7:42961.
    1. Wang L., Skotland T., Berge V., Sandvig K., Llorente A. Exosomal proteins as prostate cancer biomarkers in urine: from mass spectrometry discovery to immunoassay-based validation. Eur. J. Pharmaceut. Sci. 2017;98:80–85.
    1. Zhan Z., Guan Y., Mew K., Zeng W., Peng M., Hu P., Yang Y., Lu Y., Ren H. Urine α-fetoprotein and orosomucoid 1 as biomarkers of hepatitis B virus-associated hepatocellular carcinoma. Am. J. Physiol. Gastrointest. Liver Physiol. 2019;318:G305–G312.
    1. Ak M., Bk L., N A., Oh H., As S. Application of SELDI-TOF in N-glycopeptides profiling of the urine from patients with endometrial, ovarian and cervical cancer. Arch. Physiol. Biochem. 2016;122:111–116.
    1. Huang C.-H., Kuo C.-J., Liang S.-S., Chi S.-W., Hsi E., Chen C.-C., Lee K.-T., Chiou S.-H. Onco-proteogenomics identifies urinary S100A9 and GRN as potential combinatorial biomarkers for early diagnosis of hepatocellular carcinoma. BBA Clin. 2015;3:205–213.
    1. Smith C.R., Batruch I., Bauça J.M., Kosanam H., Ridley J., Bernardini M.Q., Leung F., Diamandis E.P., Kulasingam V. Deciphering the peptidome of urine from ovarian cancer patients and healthy controls. Clin. Proteonomics. 2014;11:23.
    1. Sandow J.J., Rainczuk A., Infusini G., Makanji M., Bilandzic M., Wilson A.L., Fairweather N., Stanton P.G., Garama D., Gough D., Jobling T.W., Webb A.I., Stephens A.N. Discovery and validation of novel protein biomarkers in ovarian cancer patient urine. Proteonomics Clin. Appl. 2018;12
    1. Pontillo C., Zhang Z.-Y., Schanstra J.P., Jacobs L., Zürbig P., Thijs L., Ramírez-Torres A., Heerspink H.J.L., Lindhardt M., Klein R., Orchard T., Porta M., Bilous R.W., Charturvedi N., Rossing P., Vlahou A., Schepers E., Glorieux G., Mullen W., Delles C., et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney International Reports. 2017;2:1066–1075.
    1. Zhang Z.-Y., Ravassa S., Pejchinovski M., Yang W.-Y., Zürbig P., López B., Wei F.-F., Thijs L., Jacobs L., González A., Voigt J.-U., Verhamme P., Kuznetsova T., Díez J., Mischak H., Staessen J.A. A urinary fragment of mucin-1 subunit α is a novel biomarker associated with renal dysfunction in the general population. Kidney International Reports. 2017;2:811–820.
    1. Prescott M.A., Pastey M.K. Biomarker Insights; 2010. Identification of Unique Blood and Urine Biomarkers in Influenza Virus and Staphylococcus aureus Co-infection: A Preliminary Study.
    1. Gogalic S., Sauer U., Doppler S., Preininger C. Bladder cancer biomarker array to detect aberrant levels of proteins in urine. Analyst. 2015;140:724–735.
    1. Blanca A., Requena M.J., Alvarez J., Cheng L., Montironi R., Raspollini M.R., Reymundo C., Lopez-Beltran A. FGFR3 and Cyclin D3 as urine biomarkers of bladder cancer recurrence. Biomarkers Med. 2016;10:243–253.
    1. Shimura T., Iwasaki H., Kitagawa M., Ebi M., Yamada T., Yamada T., Katano T., Nisie H., Okamoto Y., Ozeki K., Mizoshita T., Kataoka H. Urinary cysteine-rich protein 61 and trefoil factor 3 as diagnostic biomarkers for colorectal cancer. Transl Oncol. 2019;12:539–544.
    1. Tsai J.F., Jeng J.E., Chuang L.Y., Yang M.L., Ho M.S., Chang W.Y., Hsieh M.Y., Lin Z.Y., Tsai J.H. Clinical evaluation of urinary transforming growth factor-beta1 and serum alpha-fetoprotein as tumour markers of hepatocellular carcinoma. Br. J. Canc. 1997;75:1460–1466.
    1. Morrissey J.J., Mobley J., Figenshau R.S., Vetter J., Bhayani S., Kharasch E.D. Urine aquaporin 1 and perilipin 2 differentiate renal carcinomas from other imaged renal masses and bladder and prostate cancer. Mayo Clin. Proc. 2015;90:35–42.
    1. Lee S.-W., Lee H.-Y., Bang H.J., Song H.-J., Kong S.W., Kim Y.-M. An improved prediction model for ovarian cancer using urinary biomarkers and a novel validation strategy. Int. J. Mol. Sci. 2019;20
    1. Mu A.K.-W., Lim B.-K., Hashim O.H., Shuib A.S. Identification of O-glycosylated proteins that are aberrantly excreted in the urine of patients with early stage ovarian cancer. Int. J. Mol. Sci. 2013;14:7923–7931.
    1. Zhang W.R., Craven T.E., Malhotra R., Cheung A.K., Chonchol M., Drawz P., Sarnak M.J., Parikh C.R., Shlipak M.G., Ix J.H. Kidney damage biomarkers and incident chronic kidney disease during blood pressure reduction. Ann. Intern. Med. 2018;169:610–618.
    1. Ju W., Nair V., Smith S., Zhu L., Shedden K., Song P.X.K., Mariani L.H., Eichinger F.H., Berthier C.C., Randolph A., Lai J.Y.-C., Zhou Y., Hawkins J.J., Bitzer M., Sampson M.G., Thier M., Solier C., Duran-Pacheco G.C., Duchateau-Nguyen G., Essioux L., et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 2015;7:316ra193.
    1. Wu L., Li X.-Q., Chang D.-Y., Zhang H., Li J.-J., Wu S.-L., Zhang L.-X., Chen M., Zhao M.-H. Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease. Nephrol. Dial. Transplant. 2020;35:291–297.
    1. Nowak N., Skupien J., Smiles A.M., Yamanouchi M., Niewczas M.A., Galecki A.T., Duffin K.L., Breyer M.D., Pullen N., Bonventre J.V., Krolewski A.S. Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development. Kidney Int. 2018;93:1198–1206.
    1. Satirapoj B., Dispan R., Radinahamed P., Kitiyakara C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrol. 2018;19:246.
    1. Lu Y., Chen L., Zhao B., Xiao Z., Meng T., Zhou Q., Zhang W. Urine AQP5 is a potential novel biomarker of diabetic nephropathy. J. Diabetes Complicat. 2016;30:819–825.
    1. Kim J.H., Kim S.S., Kim I.J., Lee M.J., Jeon Y.K., Kim B.H., Song S.H., Kim Y.K. Nonalbumin proteinuria is a simple and practical predictor of the progression of early-stage type 2 diabetic nephropathy. J. Diabetes Complicat. 2017;31:395–399.
    1. Gaipov A., Taubaldiyeva Z., Askarov M., Turebekov Z., Kozina L., Myngbay A., Ulyanova O., Tuganbekova S. Infusion of autologous bone marrow derived mononuclear stem cells potentially reduces urinary markers in diabetic nephropathy. J. Nephrol. 2019;32:65–73.
    1. Messchendorp A.L., Meijer E., Boertien W.E., Engels G.E., Casteleijn N.F., Spithoven E.M., Losekoot M., Burgerhof J.G.M., Peters D.J.M., Gansevoort R.T. Urinary biomarkers to identify autosomal dominant polycystic kidney disease patients with a high likelihood of disease progression. Kidney International Reports. 2018;3:291–301.
    1. von Scholten B.J., Reinhard H., Hansen T.W., Oellgaard J., Parving H.-H., Jacobsen P.K., Rossing P. Urinary biomarkers are associated with incident cardiovascular disease, all-cause mortality and deterioration of kidney function in type 2 diabetic patients with microalbuminuria. Diabetologia. 2016;59:1549–1557.
    1. Chanrat E., Worawichawong S., Radinahamed P., Sathirapongsasuti N., Nongnuch A., Assanatham M., Udomsubpayakul U., Kitiyakara C. Urine epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors of complete remission in primary glomerulonephritis. Cytokine. 2018;104:1–7.
    1. Dubin R.F., Judd S., Scherzer R., Shlipak M., Warnock D.G., Cushman M., Sarnak M., Parikh C., Bennett M., Powe N., Peralta C.A. Urinary tubular injury biomarkers are associated with ESRD and death in the REGARDS study. Kidney International Reports. 2018;3:1183–1192.
    1. Abeijon C., Alves F., Monnerat S., Wasunna M., Mbui J., Viana A.G., Bueno L.L., Siqueira W.F., Carvalho S.G., Agrawal N., Fujiwara R., Sundar S., Campos-Neto A. Development of a multiplexed assay for detection of leishmania donovani and leishmania infantum protein biomarkers in urine samples of patients with visceral leishmaniasis. J. Clin. Microbiol. 2019;57
    1. Atif M., AlSalhi M.S., Devanesan S., Masilamani V., Farhat K., Rabah D. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine. Photodiagnosis Photodyn. Ther. 2018;23:40–44.

Source: PubMed

3
Suscribir