Development and validation of hybrid Brillouin-Raman spectroscopy for non-contact assessment of mechano-chemical properties of urine proteins as biomarkers of kidney diseases

Abduzhappar Gaipov, Zhandos Utegulov, Rostislav Bukasov, Duman Turebekov, Pavel Tarlykov, Zhannur Markhametova, Zhangatay Nurekeyev, Zhanar Kunushpayeva, Alisher Sultangaziyev, Abduzhappar Gaipov, Zhandos Utegulov, Rostislav Bukasov, Duman Turebekov, Pavel Tarlykov, Zhannur Markhametova, Zhangatay Nurekeyev, Zhanar Kunushpayeva, Alisher Sultangaziyev

Abstract

Background: Proteinuria is a major marker of chronic kidney disease (CKD) progression and the predictor of cardiovascular mortality. The rapid development of renal failure is expected in those patients who have higher level of proteinuria however, some patients may have slow decline of renal function despite lower level of urinary protein excretion. The different mechanical (visco-elastic) and chemical properties, as well as the proteome profiles of urinary proteins might explain their tubular toxicity mechanism. Brillouin light scattering (BLS) and surface enhanced Raman scattering (SERS) spectroscopies are non-contact, laser optical-based techniques providing visco-elastic and chemical property information of probed human biofluids. We proposed to study and compare these properties of urinary proteins using BLS and SERS spectroscopies in nephrotic patient and validate hybrid BLS-SERS spectroscopy in diagnostic of urinary proteins as well as their profiling. The project ultimately aims for the development of an optical spectroscopic sensor for rapid, non-contact monitoring of urine samples from patients in clinical settings.

Methods: BLS and SERS spectroscopies will be used for non-contact assessment of urinary proteins in proteinuric patients and healthy subjects and will be cross-validated by Liquid Chromatography-Mass Spectrometry (LC-MS). Participants will be followed-up during the 1 year and all adverse events such as exacerbation of proteinuria, progression of CKD, complications of nephrotic syndrome, disease relapse rate and inefficacy of treatment regimen will be registered referencing incident dates. Associations between urinary protein profiles (obtained from BLS and SERS as well as LC-MS) and adverse outcomes will be evaluated to identify most unfavored protein profiles.

Discussion: This prospective study is focused on the development of non-contact hybrid BLS - SERS sensing tool and its clinical deployment for diagnosis and prognosis of proteinuria. We will identify the most important types of urine proteins based on their visco-elasticity, amino-acid profile and molecular weight responsible for the most severe cases of proteinuria and progressive renal function decline. We will aim for the developed hybrid BLS - SERS sensor, as a new diagnostic & prognostic tool, to be transferred to other biomedical applications.

Trial registration: The trial has been approved by ClinicalTrials.gov (Trial registration ID NCT04311684). The date of registration was March 17, 2020.

Keywords: Biochemical; Brillouin light scattering; Chemical; Non-contact diagnostics; Proteinuria; Raman scattering; SERS; Urine proteomics; Viscoelastic.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram illustrating study design, tasks and procedures. SERS: surface enhanced Raman scattering, LC-MS: Liquid Chromatography-Mass Spectrometry, GFR: glomerular filtration rate
Fig. 2
Fig. 2
Schematic demonstration of BLS Spectroscopy using scanning 6-pass TFPI coupled with confocal microscope. M: Mirror, F: Filter, L: Lens or Objective, IL: Imaging Lens, BS: Beam Splitter, CCD: Charge-Coupled Device, TFPI: tandem Fabry-Perot interferometer, PR: prism, PMT: photo-multiplying tube
Fig. 3
Fig. 3
Schematic demonstration of Raman Spectroscopy. M: Mirror, F: Filter, L: Lens or Objective, BS: Beam Splitter, DM: Dichroic Mirror, G: Grating, CCD: Charge-Coupled Device
Fig. 4
Fig. 4
Schematic demonstration of hybrid BLS-Raman Micro-Spectroscopy sensing system. M: Mirror, F: Filter, L: Lens or Objective, CL: Cylindrical Lens, IL: Imaging Lens, BS: Beam Splitter, PBS: Polarizing Beam Splitter, DM: Dichroic Mirror, SMF: Single Mode Fiber, G: Grating, FPE: Fabry-Perot Etalon, CCD: Charge-Coupled Device, VIPA: virtual image phase array, QWT: quarter-wave plate

References

    1. Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics. 2016;13(6):609–626. doi: 10.1080/14789450.2016.1190651.
    1. Gaipov A, Taubaldiyeva Z, Askarov M, Turebekov Z, Kozina L, Myngbay A, et al. Infusion of autologous bone marrow derived mononuclear stem cells potentially reduces urinary markers in diabetic nephropathy. J Nephrol. 2019;32(1):65–73. doi: 10.1007/s40620-018-0548-5.
    1. Brunzel NA. Fundamentals of urine and body fluid analysis-E-book: Elsevier health sciences. 2013.
    1. D'Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63(3):809–825. doi: 10.1046/j.1523-1755.2003.00840.x.
    1. Culleton BF, Larson MG, Parfrey PS, Kannel WB, Levy D. Proteinuria as a risk factor for cardiovascular disease and mortality in older people: a prospective study. Am J Med. 2000;109(1):1–8. doi: 10.1016/S0002-9343(00)00444-7.
    1. Oh SW, Baek SH, Kim YC, Goo HS, Heo NJ, Na KY, et al. Mild decrease in estimated glomerular filtration rate and proteinuria are associated with all-cause and cardiovascular mortality in the general population. Nephrol Dialysis Transplant. 2012;27(6):2284–2290. doi: 10.1093/ndt/gfr622.
    1. Solak Y, Yilmaz MI, Siriopol D, Saglam M, Unal HU, Yaman H, et al. Serum neutrophil gelatinase-associated lipocalin is associated with cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol. 2015;47(12):1993–2001. doi: 10.1007/s11255-015-1136-4.
    1. Solak Y, Yilmaz MI, Saglam M, Demirbas S, Verim S, Unal HU, et al. Mean corpuscular volume is associated with endothelial dysfunction and predicts composite cardiovascular events in patients with chronic kidney disease. Nephrology. 2013;18(11):728–735. doi: 10.1111/nep.12130.
    1. Baines RJ, Brunskill NJ. Tubular toxicity of proteinuria. Nat Rev Nephrol. 2011;7(3):177. doi: 10.1038/nrneph.2010.174.
    1. Bruzzi I, Benigni A, Remuzzi G. Role of increased glomerular protein traffic in the progression of renal failure. Kidney Int Suppl. 1997;62:S29–S31.
    1. Zhou H, Yuen PS, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69(8):1471–1476. doi: 10.1038/sj.ki.5000273.
    1. Viswanathan G, Upadhyay A. Assessment of proteinuria. Adv Chronic Kidney Dis. 2011;18(4):243–248. doi: 10.1053/j.ackd.2011.03.002.
    1. Alkhamaisah SI, Younes KM, Gaipov A, Aljofan M. Development and validation of a simple and sensitive HPLC method for the determination of liquid form of therapeutic substances. Electron J Gen Med. 2019;16(6):1-8.
    1. Srivastava N, Davenport RD, Burns MA. Nanoliter viscometer for analyzing blood plasma and other liquid samples. Anal Chem. 2005;77(2):383–392. doi: 10.1021/ac0494681.
    1. Fainerman VB, Trukhin DV, Zinkovych II, Miller R. Interfacial tensiometry and dilational surface visco-elasticity of biological liquids in medicine. Adv Colloid Interf Sci. 2018;255:34–46. doi: 10.1016/j.cis.2017.08.002.
    1. Wang S, Lee L, Lee J. A linear relation between the compressibility and density of blood. J Acoust Soc Am. 2001;109(1):390–396. doi: 10.1121/1.1333419.
    1. Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovski G, Novak J. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin Appl. 2009;3(9):1029–1043. doi: 10.1002/prca.200800243.
    1. Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA. The role of solvent viscosity in the dynamics of protein conformational changes. Science. 1992;256(5065):1796–1798. doi: 10.1126/science.1615323.
    1. Keith AD, Snipes W. Viscosity of cellular protoplasm. Science. 1974;183(4125):666–668. doi: 10.1126/science.183.4125.666.
    1. Mattana S, Mattarelli M, Urbanelli L, Sagini K, Emiliani C, Serra MD, et al. Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques. Light Sci Appl. 2018;7:17139. doi: 10.1038/lsa.2017.139.
    1. Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, et al. High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy. Physical Review X. 2017;7(3):031015. doi: 10.1103/PhysRevX.7.031015.
    1. Meng Z, Bustamante Lopez SC, Meissner KE, Yakovlev VV. Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy. J Biophotonics. 2016;9(3):201–207. doi: 10.1002/jbio.201500163.
    1. Traverso AJ, Thompson JV, Steelman ZA, Meng Z, Scully MO, Yakovlev VV. Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging. Anal Chem. 2015;87(15):7519–7523. doi: 10.1021/acs.analchem.5b02104.
    1. Gudun K, Elemessova Z, Khamkhash L, Ralchenko E, Bukasov R. Commercial gold nanoparticles on untreated aluminum foil: versatile, sensitive, and cost-effective SERS substrate. J Nanomater. 2017; 2017:1-8.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–845. doi: 10.2307/2531595.
    1. Dil J. Brillouin scattering in condensed matter. Rep Prog Phys. 1982;45(3):285. doi: 10.1088/0034-4885/45/3/002.
    1. Scarcelli G, Yun SH. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics. 2007;2:39–43. doi: 10.1038/nphoton.2007.250.
    1. Beroud J, Vincent B, Paternotte E, Nguyen VS, Kerdjoudj H, Velot E, et al. Brillouin spectroscopy: a new tool to decipher viscoelastic properties of biological scaffold functionalized with nanoscale films. Biomed Mater Eng. 2013;23(4):251–261.
    1. Steelman Z, Meng Z, Traverso AJ, Yakovlev VV. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis. J Biophotonics. 2015;8(5):408–414. doi: 10.1002/jbio.201400047.
    1. Akilbekova D, Ogay V, Yakupov T, Sarsenova M, Umbayev B, Nurakhmetov A, et al. Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones. J Biomed Opt. 2018;23(9):1–11. doi: 10.1117/1.JBO.23.9.097004.
    1. Akilbekova D, Yakupov T, Ogay V, Umbayev B, Yakovlev VV, Utegulov ZN. Brillouin light scattering spectroscopy for tissue engineering application. Optical Elastography and Tissue Biomechanics V. Vol. 10496. Proceedings of SPIE. 2018. 104961I. San Francisco, United States. 10.1117/12.2289923.
    1. Coker Z, Troyanova-Wood M, Traverso AJ, Yakupov T, Utegulov ZN, Yakovlev VV. Assessing performance of modern Brillouin spectrometers. Opt Express. 2018;26(3):2400–2409. doi: 10.1364/OE.26.002400.
    1. Rakymzhan A, Yakupov T, Yelemessova Z, Bukasov R, Yakovlev VV, Utegulov ZN. Monitoring of vegetation drying by Brillouin and Raman spectroscopies. Sensing for Agriculture and Food Quality and Safety IX. Vol. 10217. Proceedings of SPIE. 2017. 102170C. Anaheim, United States. 10.1117/12.2263535.
    1. Dmitriev A, Vashchenkov V, Fedoseev A, Lushnikov S. Phase transformations of bovine serum albumin: evidences from Rayleigh-Brillouin light scattering. J Raman Spectrosc. 2019;50(4):537–547. doi: 10.1002/jrs.5547.
    1. Premasiri WR, Clarke RH, Womble ME. Urine analysis by laser Raman spectroscopy. Lasers Surg Med. 2001;28(4):330–334. doi: 10.1002/lsm.1058.
    1. Brindha E, Rajasekaran R, Aruna P, Koteeswaran D, Ganesan S. High wavenumber Raman spectroscopy in the characterization of urinary metabolites of normal subjects, oral premalignant and malignant patients. Spectrochim Acta A Mol Biomol Spectrosc. 2017;171:52–59. doi: 10.1016/j.saa.2016.06.048.
    1. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M. Raman spectroscopy of proteins: a review. J Raman Spectrosc. 2013;44(8):1061–1076. doi: 10.1002/jrs.4335.
    1. Zou Y, Huang M, Wang K, Song B, Wang Y, Chen J, et al. Urine surface-enhanced Raman spectroscopy for non-invasive diabetic detection based on a portable Raman spectrometer. Laser Phys Lett. 2016;13(6):065604. doi: 10.1088/1612-2011/13/6/065604.
    1. Chamuah N, Saikia A, Joseph AM, Nath P. Blu-ray DVD as SERS substrate for reliable detection of albumin, creatinine and urea in urine. Sensors Actuators B Chem. 2019;285:108–115. doi: 10.1016/j.snb.2019.01.031.
    1. Meng Z, Yakovlev VV, Utegulov Z. Surface-enhanced Brillouin scattering in a vicinity of plasmonic gold nanostructures. Plasmonics in Biology and Medicine XII. Proceedings of SPIE. 2015. 93400Z-1. San Francisco, United States. 10.1117/12.2079667.
    1. Johnson WL, Kim SA, Utegulov Z, Shaw J, Draine BT. Optimization of arrays of gold nanodisks for plasmon-mediated Brillouin light scattering. J Phys Chem C. 2009;113(33):14651–14657. doi: 10.1021/jp903965d.
    1. Johnson W, Kim S, Utegulov Z, Draine BT. Surface-plasmon fields in two-dimensional arrays of gold nanodisks. Plasmonics: Metallic Nanostructures and Their Optical Properties VI; Proceedings of SPIE. 2008;7032:70321S-1.
    1. Utegulov Z, Shaw JM, Draine BT, Kim S, Johnson WL, editors. Surface-plasmon enhancement of Brillouin light scattering from gold-nanodisk arrays on glass. Plasmonics: Metallic Nanostructures and Their Optical Properties V; Proceedings of SPIE. 2007;6641:66411M.
    1. Wang Z, Hoy WE, Nicol JL, Wang Z, Su Q, Atkins RC, et al. Predictive value of nephelometric and high-performance liquid chromatography assays of urine albumin for mortality in a high-risk Aboriginal population. Am J Kidney Dis. 2008;52(4):672–682. doi: 10.1053/j.ajkd.2008.03.007.
    1. Polkinghorne KR, Su Q, Chadban SJ, Shaw JE, Zimmet PZ, Atkins RC. Population prevalence of albuminuria in the Australian diabetes, obesity, and lifestyle (AusDiab) study: immunonephelometry compared with high-performance liquid chromatography. Am J Kidney Dis. 2006;47(4):604–613. doi: 10.1053/j.ajkd.2005.12.034.

Source: PubMed

3
Suscribir