A methodology for an acute exercise clinical trial called dementia risk and dynamic response to exercise

Dreu White, Casey S John, Ashley Kucera, Bryce Truver, Rebecca J Lepping, Paul J Kueck, Phil Lee, Laura Martin, Sandra A Billinger, Jeffrey M Burns, Jill K Morris, Eric D Vidoni, Dreu White, Casey S John, Ashley Kucera, Bryce Truver, Rebecca J Lepping, Paul J Kueck, Phil Lee, Laura Martin, Sandra A Billinger, Jeffrey M Burns, Jill K Morris, Eric D Vidoni

Abstract

Exercise likely has numerous benefits for brain and cognition. However, those benefits and their causes remain imprecisely defined. If the brain does benefit from exercise it does so primarily through cumulative brief, "acute" exposures over a lifetime. The Dementia Risk and Dynamic Response to Exercise (DYNAMIC) clinical trial seeks to characterize the acute exercise response in cerebral perfusion, and circulating neurotrophic factors in older adults with and without the apolipoprotein e4 genotype (APOE4), the strongest genetic predictor of sporadic, late onset Alzheimer's disease. DYNAMIC will enroll 60 older adults into a single moderate intensity bout of exercise intervention, measuring pre- and post-exercise cerebral blood flow (CBF) using arterial spin labeling, and neurotrophic factors. We expect that APOE4 carriers will have poor CBF regulation, i.e. slower return to baseline perfusion after exercise, and will demonstrate blunted neurotrophic response to exercise, with concentrations of neurotrophic factors positively correlating with CBF regulation. Preliminary findings on 7 older adults and 9 younger adults demonstrate that the experimental method can capture CBF and neurotrophic response over a time course. This methodology will provide important insight into acute exercise response and potential directions for clinical trial outcomes.ClinicalTrials.gov NCT04009629, Registered 05/07/2019.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Age-dependent resistance and cadence decision algorithm for standardizing workload to achieve target heart rate.
Figure 2
Figure 2
Study flow and average time for each study event.
Figure 3
Figure 3
Preliminary proof-of-concept findings demonstrating our ability to capture gray matter cerebral blood flow (CBF) changes post-exercise. Solid lines represent the age group mean of the cerebral blood flow (CBF) signal for each labeled-control image pair with reference to the left hand ordinate. Shaded regions show the range of CBF for each age group. Dashed lines represent mean arterial pressure over the MRI timecourse. Darker lines and shading indicate the older adult cohort. Lighter lines and shading indicate the younger adult cohort. Figure created with the ggplot2 package (ver. 3.3.3) operating under open source R version 4.0.5 (2021-03-31).

References

    1. Colby, S. L. & Ortman, J. M. Projections for the Size and Composition of the U. S. Population: 2014 to 2060. ed U. S. Census Bureau, (Washington, DC, 2014).
    1. National Institute on Aging. Growing Older in America: the Healthy and Retirement Study. (National Institutes of Health, Bethesda, MD, 2007).
    1. Jutkowitz E, et al. Societal and family lifetime cost of dementia: Implications for policy. J. Am. Geriatr. Soc. 2017;65:2169–2175. doi: 10.1111/jgs.15043.
    1. Assocaition A. 2016 Alzheimer's disease facts and figures. Alzheimer Dementia. 2016;12:459–509. doi: 10.1016/j.jalz.2016.03.001.
    1. Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Arch. Intern. Med. 2001;161:1703–1708. doi: 10.1001/archinte.161.14.1703.
    1. Weuve J, et al. Physical activity, including walking, and cognitive function in older women. JAMA. 2004;292:1454–1461. doi: 10.1001/jama.292.12.1454.
    1. Nagamatsu LS, et al. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: A 6-month randomized controlled trial. J. Aging Res. 2013;2013:861893. doi: 10.1155/2013/861893.
    1. Ngandu T, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet. 2015;385:2255–2263. doi: 10.1016/S0140-6736(15)60461-5.
    1. Maass A, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol. Psychiatry. 2015;20:585–593. doi: 10.1038/mp.2014.114.
    1. Erickson KI, et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 2011;108:3017–3022. doi: 10.1073/pnas.1015950108.
    1. Vidoni ED, et al. Dose-response of aerobic exercise on cognition: a community-based, pilot randomized controlled trial. PLoS ONE. 2015;10:e0131647. doi: 10.1371/journal.pone.0131647.
    1. Rosenberg A, et al. Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: The FINGER trial. Alzheimer Dementia. 2017;14:263–270. doi: 10.1016/j.jalz.2017.09.006.
    1. Sink KM, et al. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: The LIFE randomized trial. JAMA. 2015;314:781–790. doi: 10.1001/jama.2015.9617.
    1. Brasure M, et al. Physical activity interventions in preventing cognitive decline and alzheimer-type dementia: A systematic review. Ann. Intern. Med. 2018;168:30–38. doi: 10.7326/M17-1528.
    1. de Souto Barreto PS, Demougeot L, Vellas B, Rolland Y. Exercise training for preventing dementia, mild cognitive impairment, and clinically meaningful cognitive decline: A systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2017;73:1504–1511. doi: 10.1093/gerona/glx234.
    1. Daviglus ML, et al. NIH state-of-the-science conference statement: Preventing Alzheimer's disease and cognitive decline. NIH Consens State Sci. Statements. 2010;27:1–30.
    1. Global Council on Brain Health. The Brain-Body Connection: GCBH Recommendations on Physical Activity and Brain Health. 10.26419/pia.00013.001 (2016).
    1. Erickson KI, et al. Physical activity, cognition, and brain outcomes: A review of the 2018 physical activity guidelines. Med. Sci. Sports Exerc. 2019;51:1242–1251. doi: 10.1249/MSS.0000000000001936.
    1. Erickson KI, et al. Physical activity predicts gray matter volume in late adulthood: The Cardiovascular Health Study. Neurology. 2010;75:1415–1422. doi: 10.1212/WNL.0b013e3181f88359.
    1. Pereira AC, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 2007;104:5638–5643. doi: 10.1073/pnas.0611721104.
    1. Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: Interactions between exercise, depression, and BDNF. Neuroscientist. 2012;18:82–97. doi: 10.1177/1073858410397054.
    1. Davenport MH, Hogan DB, Eskes GA, Longman RS, Poulin MJ. Cerebrovascular reserve: The link between fitness and cognitive function? Exerc. Sport Sci. Rev. 2012;40:153–158. doi: 10.1097/JES.0b013e3182553430.
    1. Buchman AS, et al. Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology. 2012;78:1323–1329. doi: 10.1212/WNL.0b013e3182535d35.
    1. Tyndall AV, et al. Cardiometabolic risk factors predict cerebrovascular health in older adults: Results from the Brain in Motion study. Physiol. Rep. 2016 doi: 10.14814/phy2.12733.
    1. Leeuwis AE, et al. Design of the ExCersion-VCI study: The effect of aerobic exercise on cerebral perfusion in patients with vascular cognitive impairment. Alzheimer Dementia. 2017;3:157–165. doi: 10.1016/j.trci.2017.02.002.
    1. Rogers RL, Meyer JS, Mortel KF. After reaching retirement age physical activity sustains cerebral perfusion and cognition. J. Am. Geriatr. Soc. 1990;38:123–128. doi: 10.1111/j.1532-5415.1990.tb03472.x.
    1. Bailey DM, et al. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke. 2013;44:3235–3238. doi: 10.1161/STROKEAHA.113.002589.
    1. Thomas BP, et al. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. JMRI. 2013;38:1177–1183. doi: 10.1002/jmri.24090.
    1. Kim SM, et al. Regional cerebral perfusion in patients with Alzheimer's disease and mild cognitive impairment: Effect of APOE epsilon4 allele. Neuroradiology. 2013;55:25–34. doi: 10.1007/s00234-012-1077-x.
    1. Alfini AJ, et al. Hippocampal and cerebral blood flow after exercise cessation in master athletes. Front. Aging Neurosci. 2016;8:184. doi: 10.3389/fnagi.2016.00184.
    1. Xu X, et al. Cerebrovascular perfusion among older adults is moderated by strength training and gender. Neurosci. Lett. 2014;560:26–30. doi: 10.1016/j.neulet.2013.12.011.
    1. Flodin P, Jonasson LS, Riklund K, Nyberg L, Boraxbekk CJ. Does aerobic exercise influence intrinsic brain activity? An aerobic exercise intervention among healthy old adults. Front. Aging Neurosci. 2017;9:267. doi: 10.3389/fnagi.2017.00267.
    1. Billinger SA, et al. Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. J. Appl. Physiol. 2017;122:1125–1133. doi: 10.1152/japplphysiol.00995.2016.
    1. Ogoh S, Ainslie PN. Cerebral blood flow during exercise: Mechanisms of regulation. J. Appl. Physiol. 2009;107:1370–1380. doi: 10.1152/japplphysiol.00573.2009.
    1. Jorgensen LG, Perko G, Secher NH. Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J. Appl. Physiol. 1992;73:1825–1830. doi: 10.1152/jappl.1992.73.5.1825.
    1. Asano M, et al. Increase in serum vascular endothelial growth factor levels during altitude training. Acta Physiol. Scand. 1998;162:455–459. doi: 10.1046/j.1365-201X.1998.0318e.x.
    1. Schobersberger W, et al. Increase in immune activation, vascular endothelial growth factor and erythropoietin after an ultramarathon run at moderate altitude. Immunobiology. 2000;201:611–620. doi: 10.1016/S0171-2985(00)80078-9.
    1. Zoladz JA, et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 2008;59(Suppl 7):119–132.
    1. Rasmussen P, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 2009;94:1062–1069. doi: 10.1113/expphysiol.2009.048512.
    1. Seifert T, et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;298:R372–377. doi: 10.1152/ajpregu.00525.2009.
    1. Smith JC, Paulson ES, Cook DB, Verber MD, Tian Q. Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: implications for fMRI. J. Neurosci. Methods. 2010;191:258–262. doi: 10.1016/j.jneumeth.2010.06.028.
    1. MacIntosh BJ, et al. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS ONE. 2014;9:e85163. doi: 10.1371/journal.pone.0085163.
    1. Olivo G, et al. Immediate effects of a single session of physical exercise on cognition and cerebral blood flow: A randomized controlled study of older adults. Neuroimage. 2021;225:117500. doi: 10.1016/j.neuroimage.2020.117500.
    1. Steventon JJ, et al. Hippocampal blood flow is increased after 20 min of moderate-intensity exercise. Cereb. Cortex. 2020;30:525–533. doi: 10.1093/cercor/bhz104.
    1. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 2007;39:17–23. doi: 10.1038/ng1934.
    1. Tai LM, et al. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol. 2016;131:709–723. doi: 10.1007/s00401-016-1547-z.
    1. Bell RD, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485:512–516. doi: 10.1038/nature11087.
    1. Scarmeas N, Habeck CG, Stern Y, Anderson KE. APOE genotype and cerebral blood flow in healthy young individuals. JAMA. 2003;290:1581–1582. doi: 10.1001/jama.290.12.1581.
    1. Fleisher AS, et al. Cerebral perfusion and oxygenation differences in Alzheimer's disease risk. Neurobiol. Aging. 2009;30:1737–1748. doi: 10.1016/j.neurobiolaging.2008.01.012.
    1. Zlatar ZZ, et al. Higher brain perfusion may not support memory functions in cognitively normal carriers of the ApoE epsilon4 allele compared to non-carriers. Front. Aging Neurosci. 2016;8:151. doi: 10.3389/fnagi.2016.00151.
    1. Thambisetty M, Beason-Held L, An Y, Kraut MA, Resnick SM. APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 2010;67:93–98. doi: 10.1001/archneurol.2009.913.
    1. Pizzie R, et al. Physical activity and cognitive trajectories in cognitively normal adults: The adult children study. Alzheimer Dis. Assoc. Disord. 2014;28:50–57. doi: 10.1097/WAD.0b013e31829628d4.
    1. Head D, et al. Exercise engagement as a moderator of the effects of APOE genotype on amyloid deposition. Arch. Neurol. 2012;69:636–643. doi: 10.1001/archneurol.2011.845.
    1. Schultz SA, et al. Cardiorespiratory fitness alters the influence of a polygenic risk score on biomarkers of AD. Neurology. 2017;88:1650–1658. doi: 10.1212/WNL.0000000000003862.
    1. Viticchi G, et al. Apolipoprotein E genotype and cerebrovascular alterations can influence conversion to dementia in patients with mild cognitive impairment. J. Alzheimer Dis. 2014;41:401–410. doi: 10.3233/JAD-132480.
    1. Tarumi T, et al. Dynamic cerebral autoregulation and tissue oxygenation in amnestic mild cognitive impairment. J. Alzheimer Dis. 2014;41:765–778. doi: 10.3233/JAD-132018.
    1. Prigent-Tessier A, et al. Physical training and hypertension have opposite effects on endothelial brain-derived neurotrophic factor expression. Cardiovasc. Res. 2013;100:374–382. doi: 10.1093/cvr/cvt219.
    1. Banoujaafar H, Van Hoecke J, Mossiat CM, Marie C. Brain BDNF levels elevation induced by physical training is reduced after unilateral common carotid artery occlusion in rats. J. Cereb. Blood Flow Metabol. 2014;34:1681–1687. doi: 10.1038/jcbfm.2014.133.
    1. Banoujaafar H, et al. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide. Eur. J. Neurosci. 2016;44:2226–2235. doi: 10.1111/ejn.13301.
    1. Fabel K, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 2003;18:2803–2812. doi: 10.1111/j.1460-9568.2003.03041.x.
    1. Rich B, Scadeng M, Yamaguchi M, Wagner PD, Breen EC. Skeletal myofiber vascular endothelial growth factor is required for the exercise training-induced increase in dentate gyrus neuronal precursor cells. J. Physiol. 2017;595:5931–5943. doi: 10.1113/JP273994.
    1. Borror A. Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise. Medical Hyp. 2017;106:1–5. doi: 10.1016/j.mehy.2017.06.024.
    1. Protection of Human Subjects. Code of Federal Regulations, Title 46. (United States Government Publishing Office, 2018).
    1. Graves RS, et al. Open-source, rapid reporting of dementia evaluations. J. Registr. Manag. 2015;42:111–114.
    1. Morris JC. The clinical dementia rating (CDR): Current version and scoring rules. Neurology. 1993;43:2412b–2414. doi: 10.1212/WNL.43.1_Part_1.241-a.
    1. Galvin JE. The quick dementia rating system (Qdrs): A rapid dementia staging tool. Alzheimers Dement. (Amst) 2015;1:249–259. doi: 10.1016/j.dadm.2015.03.003.
    1. American College of Sports Medicine. ACSM's guidelines for exercise testing and prescription. 8th ed., (Lippincott Williams & Wilkins, 2010).
    1. Kilroy E, et al. Reliability of 2D and 3D pseudo-continuous arterial spin labeling perfusion MRI in elderly populations-comparison with 15O-water PET. JMRI. 2014;39:931. doi: 10.1002/jmri.24246.
    1. Wang Y, et al. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T. Neuroimage. 2015;113:279–288. doi: 10.1016/j.neuroimage.2015.03.060.
    1. Wang DJ, et al. Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke—Comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin. 2013;3:1–7. doi: 10.1016/j.nicl.2013.06.017.
    1. Yan L, et al. Unenhanced dynamic MR angiography: High spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. Radiology. 2010;256:270–279. doi: 10.1148/radiol.10091543.
    1. Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Ann. Med. Exp. Biol. Fenn. 1957;35:307–315.
    1. Brawner CA, Ehrman JK, Schairer JR, Cao JJ, Keteyian SJ. Predicting maximum heart rate among patients with coronary heart disease receiving beta-adrenergic blockade therapy. Am. Heart J. 2004;148:910–914. doi: 10.1016/j.ahj.2004.04.035.
    1. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage. 2013;65:336–348. doi: 10.1016/j.neuroimage.2012.09.050.
    1. Wang J, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST) Magn. Reson. Med. 2003;50:599–607. doi: 10.1002/mrm.10559.
    1. Harris PA, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Sharma P, et al. CONSENSUS: A shiny application of dementia evaluation and reporting for the KU ADC longitudinal clinical cohort database. ResearchSquare. 2021 doi: 10.21203/-69396/v2.
    1. Tournier JD, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. doi: 10.1016/j.neuroimage.2019.116137.
    1. Querido JS, Sheel AW. Regulation of cerebral blood flow during exercise. Sports Med. 2007;37:765–782. doi: 10.2165/00007256-200737090-00002.
    1. Wu WC, Fernandez-Seara M, Detre JA, Wehrli FW, Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn. Reson. Med. 2007;58:1020–1027. doi: 10.1002/mrm.21403.
    1. Contrepois K, et al. Molecular choreography of acute exercise. Cell. 2020;181:1112–1130. doi: 10.1016/j.cell.2020.04.043.
    1. Pate RR, et al. Physical activity and public health. A recommendation from the centers for disease control and prevention and the American College of Sports Medicine. JAMA. 1995;273:402–407. doi: 10.1001/jama.1995.03520290054029.

Source: PubMed

3
Suscribir