Optimizing the Number of Child Deaths Averted with Mass Azithromycin Distribution

Catherine E Oldenburg, Ahmed M Arzika, Ramatou Maliki, Ying Lin, Kieran S O'Brien, Jeremy D Keenan, Thomas M Lietman, For The Mordor Study Group, Catherine E Oldenburg, Ahmed M Arzika, Ramatou Maliki, Ying Lin, Kieran S O'Brien, Jeremy D Keenan, Thomas M Lietman, For The Mordor Study Group

Abstract

Biannual mass azithromycin distribution to children younger than 5 years has been shown to reduce all-cause mortality in sub-Saharan Africa. Antibiotic-sparing approaches to azithromycin distribution, such as targeting to younger children who are at higher risk of mortality, are being considered by policymakers. We evaluated the absolute number of deaths averted in the Macrolides Oraux pour Réduire le Décès avec un Oeil sur la Résistance study in three age-groups: 1-5 months, 1-11 months, and 1-59 months. The number of deaths averted decreased from 729 (95% CI 492 to 966) in children aged 1-59 months to 297 (95% CI 168 to 427) and 126 (95% CI 43 to 209) in the 1- to 11-month and 1- to 5-month groups, respectively. Limiting antibiotic treatment to a subgroup of higher risk children may result in fewer deaths averted compared with treating all preschool children.

Figures

Figure 1.
Figure 1.
Consolidated standards of reporting trials flow diagram for the Niger site of the Macrolides Oraux pour Réduire le Décès avec un Oeil sur la Résistance study.

References

    1. Keenan JD, et al. 2018. Mass azithromycin distribution for reducing childhood mortality in sub-Saharan Africa. N Engl J Med 378: 1583–1592.
    1. Golding N, et al. 2017. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the sustainable development goals. Lancet 390: 2171–2182.
    1. Tickell KD, Deichsel EL, Walson JL, 2020. Mass drug administration of azithromycin to reduce child mortality: only for high-mortality settings? Am J Trop Med Hyg 103: 1274–1275.
    1. O’Brien K, Emerson P, Hooper PJ, Reingold AL, Dennis EG, Keenan JD, Lietman TM, Oldenburg CE, 2019. Antimicrobial resistance following mass azithromycin distribution for trachoma: a systematic review. Lancet Infect Dis 19: e14–e25.
    1. Oron AP, et al. 2020. Effect modification by baseline mortality in the MORDOR azithromycin trial. Am J Trop Med Hyg 103: 1295–1300.
    1. Porco TC, et al. 2020. Efficacy of mass azithromycin distribution for reducing childhood mortality across geographic regions. Am J Trop Med Hyg 103: 1291–1294.
    1. House JI, et al. 2009. Assessment of herd protection against trachoma due to repeated mass antibiotic distributions: a cluster-randomisedtrial. Lancet 373: 1111–1118.
    1. Turner HC, Toor J, Hollingsworth TD, Anderson RM, 2018. Economic evaluations of mass drug administration: the importance of economies of scale and scope. Clin Infect Dis 66: 1298–1303.
    1. Skalet AH, et al. 2010. Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: a cluster-randomized clinical trial. PLoS Med 7: e1000377.
    1. Seidman JC, Johnson LB, Levens J, Mkocha H, Muñoz B, Silbergeld EK, West SK, Coles CL, 2016. Longitudinal comparison of antibiotic resistance in diarrheagenic and non-pathogenic Escherichia coli from young Tanzanian children. Front Microbiol 7: 365–368.
    1. Austin D, Kakehashi M, Anderson R, 1997. The transmission dynamics of antibiotic-resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption. Proc Biol Sci 264: 1629–1638.
    1. Austin D, Kristinsson K, Anderson R, 1999. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci USA 96: 1152–1156.
    1. Keenan JD, et al. 2019. Longer-term assessment of azithromycin for reducing childhood mortality in Africa. N Engl J Med 380: 2207–2214.
    1. Doan T, et al. 2019. Macrolide resistance in MORDOR I – a cluster-randomized trial in Niger. N Engl J Med 380: 2271–2273.
    1. Mermin J, et al. 2005. Cotrimoxazole prophylaxis by HIV-infected persons in Uganda reduces morbidity and mortality among HIV-uninfected family members. AIDS 19: 1035–1042.
    1. Rose G, 1985. Sick individuals and sick populations. Int J Epidemiol 14: 32–38.

Source: PubMed

3
Suscribir