Concomitant sensory stimulation during therapy to enhance hand functional recovery post stroke

Na Jin Seo, Viswanathan Ramakrishnan, Michelle L Woodbury, Leonardo Bonilha, Christian Finetto, Christian Schranz, Gabrielle Scronce, Kristen Coupland, Jenna Blaschke, Adam Baker, Keith Howard, Caitlyn Meinzer, Craig A Velozo, Robert J Adams, Na Jin Seo, Viswanathan Ramakrishnan, Michelle L Woodbury, Leonardo Bonilha, Christian Finetto, Christian Schranz, Gabrielle Scronce, Kristen Coupland, Jenna Blaschke, Adam Baker, Keith Howard, Caitlyn Meinzer, Craig A Velozo, Robert J Adams

Abstract

Background: Post-stroke hand impairment is prevalent and persistent even after a full course of rehabilitation. Hand diminishes stroke survivors' abilities for activities of daily living and independence. One way to improve treatment efficacy is to augment therapy with peripheral sensory stimulation. Recently, a novel sensory stimulation, TheraBracelet, has been developed in which imperceptible vibration is applied during task practice through a wrist-worn device. The objective of this trial is to determine if combining TheraBracelet with hand task practice is superior to hand task practice alone.

Methods: A double-blind randomized controlled trial will be used. Chronic stroke survivors will undergo a standardized hand task practice therapy program (3 days/week for 6 weeks) while wearing a device on the paretic wrist. The device will deliver TheraBracelet vibration for the treatment group and no vibration for the control group. The primary outcome is hand function measured by the Wolf Motor Function Test. Other outcomes include the Box and Block Test, Action Research Arm Test, upper extremity use in daily living, biomechanical measure of the sensorimotor grip control, and EEG-based neural communication.

Discussion: This research will determine clinical utility of TheraBracelet to guide future translation. The TheraBracelet stimulation is delivered via a wrist-worn device, does not interfere with hand motion, and can be easily integrated into clinical practice. Enhancing hand function should substantially increase stroke survivors' independence and quality of life and reduce caregiver burden.

Trial registration: NCT04569123 . Registered on September 29, 2020.

Keywords: EEG; Hand; Hand function; Neurologic rehabilitation; Occupational therapy; Paralysis; Physical rehabilitation; Physical stimulation; Randomized controlled trial; Stroke; Stroke rehabilitation; Subliminal stimulation; Upper extremity; Upper limb paresis.

Conflict of interest statement

NJS is an inventor of the TheraBracelet stimulation. All other authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
An example therapy session with the wrist-worn device that can deliver TheraBracelet stimulation
Fig. 2
Fig. 2
Participation timeline. All participants will have a baseline assessment, 6 weeks of task practice therapy with weekly hand function assessments, post assessment, and 1-month follow-up assessment

References

    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire D, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics-2015 Update: a report from the American Heart Association. Circulation. 2015;131(4):e29–e322. doi: 10.1161/CIR.0000000000000152.
    1. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, Wolfe CDA. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32(6):1279–1284. doi: 10.1161/01.STR.32.6.1279.
    1. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–398. doi: 10.1016/0003-9993(94)90161-9.
    1. Stewart JC, Cramer SC. Patient-reported measures provide unique insights into motor function after stroke. Stroke. 2013;44(4):1111–1116. doi: 10.1161/STROKEAHA.111.674671.
    1. Conforto AB, Dos Anjos SM, Bernardo WM, Silva AAD, Conti J, Machado AG, et al. Repetitive peripheral sensory stimulation and upper limb performance in stroke: a systematic review and meta-analysis. Neurorehabil Neural Repair. 2018;32(10):863–871. doi: 10.1177/1545968318798943.
    1. Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17(6):649–655. doi: 10.1016/j.conb.2008.01.007.
    1. Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One. 2012;7(12):e51298. doi: 10.1371/journal.pone.0051298.
    1. Kaneko T, Caria MA, Asanuma H. Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J Comp Neurol. 1994;345(2):172–184. doi: 10.1002/cne.903450203.
    1. Kaneko T, Caria MA, Asanuma H. Information processing within the motor cortex. I. Responses of morphologically identified motor cortical cells to stimulation of the somatosensory cortex. J Comp Neurol. 1994;345(2):161–171. doi: 10.1002/cne.903450202.
    1. Lemon RN. Functional properties of monkey motor cortex neurones receiving afferent input from the hand and fingers. J Physiol. 1981;311(1):497–519. doi: 10.1113/jphysiol.1981.sp013601.
    1. Matyas F, Sreenivasan V, Marbach F, Wacongne C, Barsy B, Mateo C, Aronoff R, Petersen CCH. Motor control by sensory cortex. Science. 2010;330(6008):1240–1243. doi: 10.1126/science.1195797.
    1. Jenner JR, Stephens JA. Cutaneous reflex responses and their central nervous pathways studied in man. J Physiol. 1982;333(1):405–419. doi: 10.1113/jphysiol.1982.sp014461.
    1. Chen R, Ashby P. Reflex responses in upper limb muscles to cutaneous stimuli. Can J Neurol Sci. 1993;20(4):271–278. doi: 10.1017/S0317167100048174.
    1. Ridding MC, Rothwell JC. Afferent input and cortical organisation: a study with magnetic stimulation. Exp Brain Res. 1999;126(4):536–544. doi: 10.1007/s002210050762.
    1. Shim JK, Karol S, Kim YS, Seo NJ, Kim YH, Kim Y, Yoon BC. Tactile feedback plays a critical role in maximum finger force production. J Biomech. 2012;45(3):415–420. doi: 10.1016/j.jbiomech.2011.12.001.
    1. Seo NJ, Shim JK, Engel AK, Enders LR. Grip surface affects maximum pinch force. Hum Factors. 2011;53(6):740–748. doi: 10.1177/0018720811420256.
    1. Rosenkranz K, Rothwell JC. Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol. 2003;551(Pt 2):649–660. doi: 10.1113/jphysiol.2003.043752.
    1. Rosenkranz K, Pesenti A, Paulus W, Tergau F. Focal reduction of intracortical inhibition in the motor cortex by selective proprioceptive stimulation. Exp Brain Res. 2003;149(1):9–16. doi: 10.1007/s00221-002-1330-3.
    1. Golaszewski SM, Siedentopf CM, Koppelstaetter F, Rhomberg P, Guendisch GM, Schlager A, Gallasch E, Eisner W, Felber SR, Mottaghy FM. Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology. 2004;62(12):2262–2269. doi: 10.1212/WNL.62.12.2262.
    1. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540(Pt 2):623–633. doi: 10.1113/jphysiol.2001.012801.
    1. Meesen RL, Cuypers K, Rothwell JC, Swinnen SP, Levin O. The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Hum Brain Mapp. 2011;32(6):872–882. doi: 10.1002/hbm.21075.
    1. Conforto AB, Ferreiro KN, Tomasi C, dos Santos RL, Moreira VL, Marie SK, et al. Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil Neural Repair. 2010;24(3):263–272. doi: 10.1177/1545968309349946.
    1. Celnik P, Hummel F, Harris-Love M, Wolk R, Cohen LG. Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1369–1376. doi: 10.1016/j.apmr.2007.08.001.
    1. Marconi B, Filippi GM, Koch G, Giacobbe V, Pecchioli C, Versace V, Camerota F, Saraceni VM, Caltagirone C. Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients. Neurorehabil Neural Repair. 2011;25(1):48–60. doi: 10.1177/1545968310376757.
    1. Conforto AB, Cohen LG, dos Santos RL, Scaff M, Marie SK. Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J Neurol. 2007;254(3):333–339. doi: 10.1007/s00415-006-0364-z.
    1. Sonde L, Gip C, Fernaeus SE, Nilsson CG, Viitanen M. Stimulation with low frequency (1.7 Hz) transcutaneous electric nerve stimulation (low-tens) increases motor function of the post-stroke paretic arm. Scand J Rehabil Med. 1998;30(2):95–99. doi: 10.1080/003655098444192.
    1. Yozbatiran N, Donmez B, Kayak N, Bozan O. Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia. Clin Rehabil. 2006;20(1):4–11. doi: 10.1191/0269215506cr928oa.
    1. Carrico C, Chelette KC, 2nd, Westgate PM, Salmon-Powell E, Nichols L, Sawaki L. Randomized trial of peripheral nerve stimulation to enhance modified constraint-induced therapy after stroke. Am J Phys Med Rehabil. 2016;95(6):397–406. doi: 10.1097/PHM.0000000000000476.
    1. Carrico C, Chelette KC, 2nd, Westgate PM, Powell E, Nichols L, Fleischer A, et al. Nerve stimulation enhances task-oriented training in chronic, severe motor deficit after stroke: a randomized trial. Stroke. 2016;47(7):1879–1884. doi: 10.1161/STROKEAHA.116.012671.
    1. Peurala SH, Pitkanen K, Sivenius J, Tarkka IM. Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke. Clin Rehabil. 2002;16(7):709–716. doi: 10.1191/0269215502cr543oa.
    1. Cordo P, Wolf S, Lou JS, Bogey R, Stevenson M, Hayes J, Roth E. Treatment of severe hand impairment following stroke by combining assisted movement, muscle vibration, and biofeedback. J Neurol Phys Ther. 2013;37(4):194–203. doi: 10.1097/NPT.0000000000000023.
    1. Cordo P, Lutsep H, Cordo L, Wright WG, Cacciatore T, Skoss R. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients. Neurorehabil Neural Repair. 2009;23(1):67–77. doi: 10.1177/1545968308317437.
    1. Gomes-Osman J, Field-Fote EC. Cortical vs. afferent stimulation as an adjunct to functional task practice training: a randomized, comparative pilot study in people with cervical spinal cord injury. Clin Rehabil. 2015;29(8):771–782. doi: 10.1177/0269215514556087.
    1. Hoffman L, Field-Fote E. Effects of practice combined with somatosensory or motor stimulation on hand function in persons with spinal cord injury. Top Spinal Cord Inj Rehabil. 2013;19(4):288–299. doi: 10.1310/sci1904-288.
    1. Yu A, Yick KL, Ng SP, Yip J. Case study on the effects of fit and material of sports gloves on hand performance. Appl Ergon. 2019;75:17–26. doi: 10.1016/j.apergo.2018.09.007.
    1. Kinoshita H. Effect of gloves on prehensile forces during lifting and holding tasks. Ergonomics. 1999;42(10):1372–1385. doi: 10.1080/001401399185018.
    1. Morrow CM, Johnson E, Simpson KN, Seo NJ. Determining factors that influence adoption of new post-stroke sensorimotor rehabilitation devices in the USA. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1213–1222. doi: 10.1109/TNSRE.2021.3090571.
    1. Smith L, Brouwer B. Effectiveness of muscle vibration in modulating corticospinal excitability. J Rehabil Res Dev. 2005;42(6):787–794. doi: 10.1682/JRRD.2005.02.0041.
    1. Lakshminarayanan K, Wang F, Webster JG, Seo NJ. Feasibility and usability of a wearable orthotic for stroke survivors with hand impairment. Disabil Rehabil Assist Technol. 2017;12(2):175–183. doi: 10.3109/17483107.2015.1111945.
    1. Seo NJ, Enders LR, Fortune A, Cain S, Vatinno AA, Schuster E, Ramakrishnan V, Feng W. Phase I Safety Trial: Extended daily peripheral sensory stimulation using a wrist-worn vibrator in stroke survivors. Transl Stroke Res. 2020;11(2):204–213. doi: 10.1007/s12975-019-00724-9.
    1. Wang F, Lakshminarayanan K, Slota GP, Seo NJ, Webster JG. An MRI-compatible hand sensory vibrotactile system. Physiol Meas. 2015;36(1):N15–N21. doi: 10.1088/0967-3334/36/1/N15.
    1. Vallbo AB. Microneurography: how it started and how it works. J Neurophysiol. 2018;120(3):1415–1427. doi: 10.1152/jn.00933.2017.
    1. Ward LM. Physics of neural synchronisation mediated by stochastic resonance. Contemporary Physics. 2009;50(5):563–574. doi: 10.1080/00107510902879246.
    1. Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115(2):267–281. doi: 10.1016/j.clinph.2003.09.014.
    1. Seo NJ, Lakshminarayanan K, Lauer AW, Ramakrishnan V, Schmit BD, Hanlon CA, et al. Use of imperceptible wrist vibration to modulate sensorimotor cortical activity. Exp Brain Res. 2019;237(3):805–16.
    1. Seo NJ, Lakshminarayanan K, Bonilha L, Lauer AW, Schmit BD. Effect of imperceptible vibratory noise applied to wrist skin on fingertip touch evoked potentials - an EEG study. Physiol Rep. 2015;3(11):e12624. doi: 10.14814/phy2.12624.
    1. Ward LM, MacLean SE, Kirschner A. Stochastic resonance modulates neural synchronization within and between cortical sources. PLoS One. 2010;5(12):e14371. doi: 10.1371/journal.pone.0014371.
    1. Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88(1):220–235. doi: 10.1016/j.neuron.2015.09.034.
    1. Collins JJ, Imhoff TT, Grigg P. Noise-enhanced tactile sensation. Nature. 1996;383(6603):770. doi: 10.1038/383770a0.
    1. Enders LR, Hur P, Johnson MJ, Seo NJ. Remote vibrotactile noise improves light touch sensation in stroke survivors' fingertips via stochastic resonance. J Neuroeng Rehabil. 2013;10(1):105. doi: 10.1186/1743-0003-10-105.
    1. Seo NJ, Kosmopoulos ML, Enders LR, Hur P. Effect of remote sensory noise on hand function post stroke. Front Hum Neurosci. 2014;8:934. doi: 10.3389/fnhum.2014.00934.
    1. Lakshminarayanan K, Lauer AW, Ramakrishnan V, Webster JG, Seo NJ. Application of vibration to wrist and hand skin affects fingertip tactile sensation. Physiol Rep. 2015;3(7):e12465. doi: 10.14814/phy2.12465.
    1. Seo NJ, Woodbury ML, Bonilha L, Ramakrishnan V, Kautz SA, Downey RJ, Dellenbach BHS, Lauer AW, Roark CM, Landers LE, Phillips SK, Vatinno AA. TheraBracelet stimulation during task-practice therapy to improve upper extremity function after stroke: a pilot randomized controlled study. Phys Ther. 2019;99(3):319–328. doi: 10.1093/ptj/pzy143.
    1. Vatinno AA, Hall L, Cox H, Fluharty A, Taylor C, Wease A, Davis A, Cain S, Ramakrishnan V, Woodbury M, Seo NJ. Using subthreshold vibratory stimulation during poststroke rehabilitation therapy: a case series. OTJR (Thorofare N J). 2022;42(1):30–39. doi: 10.1177/15394492211042275.
    1. Woodbury M, Velozo CA, Thompson PA, Light K, Uswatte G, Taub E, Winstein CJ, Morris D, Blanton S, Nichols-Larsen DS, Wolf SL. Measurement structure of the Wolf Motor Function Test: implications for motor control theory. Neurorehabil Neural Repair. 2010;24(9):791–801. doi: 10.1177/1545968310370749.
    1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–207. doi: 10.1093/ptj/67.2.206.
    1. Seo NJ, Sindhu BS, Shechtman O. Influence of pain associated with musculoskeletal disorders on grip force timing. J Hand Ther. 2011;24(4):335–343. doi: 10.1016/j.jht.2011.06.004.
    1. Lang CE, Birkenmeier RL. Upper-extremity task-specific training after stroke or disability: a manual for occupational therapy and physical therapy. 1st ed: AOTA Press; 2013.
    1. Fleet A, Page SJ, MacKay-Lyons M, Boe SG. Modified constraint-induced movement therapy for upper extremity recovery post stroke: what is the evidence? Top Stroke Rehabil. 2014;21(4):319–331. doi: 10.1310/tsr2104-319.
    1. Birkenmeier RL, Prager EM, Lang CE. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil Neural Repair. 2010;24(7):620–635. doi: 10.1177/1545968310361957.
    1. Lang CE, Strube MJ, Bland MD, Waddell KJ, Cherry-Allen KM, Nudo RJ, Dromerick AW, Birkenmeier RL. Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–354. doi: 10.1002/ana.24734.
    1. Winstein CJ, Wolf SL, Dromerick AW, Lane CJ, Nelsen MA, Lewthwaite R, et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA. 2016;315(6):571–581. doi: 10.1001/jama.2016.0276.
    1. Page SJ, Sisto S, Levine P, McGrath RE. Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Arch Phys Med Rehabil. 2004;85(1):14–18. doi: 10.1016/S0003-9993(03)00481-7.
    1. Platz T, Eickhof C, van Kaick S, Engel U, Pinkowski C, Kalok S, Pause M. Impairment-oriented training or Bobath therapy for severe arm paresis after stroke: a single-blind, multicentre randomized controlled trial. Clin Rehabil. 2005;19(7):714–724. doi: 10.1191/0269215505cr904oa.
    1. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–2104. doi: 10.1001/jama.296.17.2095.
    1. Waddell KJ, Birkenmeier RL, Moore JL, Hornby TG, Lang CE. Feasibility of high-repetition, task-specific training for individuals with upper-extremity paresis. Am J Occup Ther. 2014;68(4):444–453. doi: 10.5014/ajot.2014.011619.
    1. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807. doi: 10.1523/JNEUROSCI.16-02-00785.1996.
    1. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002;125(Pt 4):773–788. doi: 10.1093/brain/awf091.
    1. Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol. 1995;74(3):1037–1045. doi: 10.1152/jn.1995.74.3.1037.
    1. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–454. doi: 10.1016/j.neuron.2011.10.008.
    1. Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74(1):27–55. doi: 10.1006/nlme.1999.3934.
    1. Hosp JA, Luft AR. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plast. 2011;2011:871296. doi: 10.1155/2011/871296.
    1. Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004;36(2):212–224. doi: 10.3200/JMBR.36.2.212-224.
    1. Seo NJ, Armstrong TJ, Ashton-Miller JA, Chaffin DB. The effect of torque direction and cylindrical handle diameter on the coupling between the hand and a cylindrical handle. J Biomech. 2007;40(14):3236–3243. doi: 10.1016/j.jbiomech.2007.04.023.
    1. Seo NJ, Armstrong TJ. Investigation of grip force, normal force, contact area, hand size, and handle size for cylindrical handles. Hum Factors. 2008;50(5):734–744. doi: 10.1518/001872008X354192.
    1. Park J, Seo NJ, Son J, Kim W, Cheong J. Postural variation of hand precision grips by object size. J Mech Sci Technol. 2014;28(5):1641–1651. doi: 10.1007/s12206-014-0309-x.
    1. Seo NJ, Armstrong TJ. Effect of elliptic handle shape on grasping strategies, grip force distribution, and twisting ability. Ergonomics. 2011;54(10):961–970. doi: 10.1080/00140139.2011.606923.
    1. Hur P, Motawar B, Seo NJ. Hand breakaway strength model-effects of glove use and handle shapes on a person's hand strength to hold onto handles to prevent fall from elevation. J Biomech. 2012;45(6):958–964. doi: 10.1016/j.jbiomech.2012.01.013.
    1. Seo NJ, Enders LR. Hand grip function assessed by the box and block test is affected by object surfaces. J Hand Ther. 2012;25(4):397–404. doi: 10.1016/j.jht.2012.04.004.
    1. Slota GP, Enders LR, Seo NJ. Improvement of hand function using different surfaces and identification of difficult movement post stroke in the Box and Block Test. Appl Ergon. 2014;45(4):833–838. doi: 10.1016/j.apergo.2013.10.014.
    1. Seo NJ, Armstrong TJ, Young JG. Effects of handle orientation, gloves, handle friction and elbow posture on maximum horizontal pull and push forces. Ergonomics. 2010;53(1):92–101. doi: 10.1080/00140130903389035.
    1. Enders LR, Seo NJ. Phalanx force magnitude and trajectory deviation increased during power grip with an increased coefficient of friction at the hand-object interface. J Biomech. 2011;44(8):1447–1453. doi: 10.1016/j.jbiomech.2011.03.020.
    1. Seo NJ, Armstrong TJ, Chaffin DB, Ashton-Miller JA. Inward torque and high-friction handles can reduce required muscle efforts for torque generation. Hum Factors. 2008;50(1):37–48. doi: 10.1518/001872008X250610.
    1. Seo NJ, Armstrong TJ, Chaffin DB, Ashton-Miller JA. The effect of handle friction and inward or outward torque on maximum axial push force. Hum Factors. 2008;50(2):227–236. doi: 10.1518/001872008X250692.
    1. Seo NJ, Armstrong TJ. Biomechanical analysis for handle stability during maximum push and pull exertions. Ergonomics. 2009;52(12):1568–1575. doi: 10.1080/00140130903287999.
    1. McDonnell MD, Ward LM. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci. 2011;12(7):415–426. doi: 10.1038/nrn3061.
    1. Wells C, Ward LM, Chua R, Inglis JT. Touch noise increases vibrotactile sensitivity in old and young. Psychol Sci. 2005;16(4):313–320. doi: 10.1111/j.0956-7976.2005.01533.x.
    1. Collins JJ, Imhoff TT, Grigg P. Noise-mediated enhancements and decrements in human tactile sensation. Phys Rev E. 1997;56(1):923–926. doi: 10.1103/PhysRevE.56.923.
    1. Kurita Y, Shinohara M, Ueda J. Wearable sensorimotor enhancer for fingertip based on stochastic resonance effect. IEEE Transact Human Mach Syst. 2013;43(3):333–337. doi: 10.1109/TSMC.2013.2242886.
    1. Collins JJ, Priplata AA, Gravelle DC, Niemi J, Harry J, Lipsitz LA. Noise-enhanced human sensorimotor function. IEEE Eng Med Biol Mag. 2003;22(2):76–83. doi: 10.1109/MEMB.2003.1195700.
    1. Trevino M, De la Torre-Valdovinos B, Manjarrez E. Noise improves visual motion discrimination via a stochastic resonance-like phenomenon. Front Hum Neurosci. 2016;10:572. doi: 10.3389/fnhum.2016.00572.
    1. Liu W, Lipsitz LA, Montero-Odasso M, Bean J, Kerrigan DC, Collins JJ. Noise-enhanced vibrotactile sensitivity in older adults, patients with stroke, and patients with diabetic neuropathy. Arch Phys Med Rehabil. 2002;83(2):171–176. doi: 10.1053/apmr.2002.28025.
    1. Ragert P, Kalisch T, Bliem B, Franzkowiak S, Dinse HR. Differential effects of tactile high- and low-frequency stimulation on tactile discrimination in human subjects. BMC Neurosci. 2008;9(1):9. doi: 10.1186/1471-2202-9-9.
    1. Perez MA, Field-Fote EC, Floeter MK. Patterned sensory stimulation induces plasticity in reciprocal Ia inhibition in humans. J Neurosci. 2003;23(6):2014–2018. doi: 10.1523/JNEUROSCI.23-06-02014.2003.
    1. Bolanowski SJ, Jr, Gescheider GA, Verrillo RT, Checkosky CM. Four channels mediate the mechanical aspects of touch. J Acoust Soc Am. 1988;84(5):1680–1694. doi: 10.1121/1.397184.
    1. Bell-Krotoski J, Tomancik E. The repeatability of testing with Semmes-Weinstein monofilaments. J Hand Surg Am. 1987;12(1):155–161. doi: 10.1016/S0363-5023(87)80189-2.
    1. Hur P, Wan Y-H, Seo NJ. Investigating the role of vibrotactile noise in early response to perturbation. IEEE Transact Biomed Engi. 2014;61(6):1628–1633. doi: 10.1109/TBME.2013.2294672.
    1. Ehrenstein WH, Ehrenstein A. Psychophysical methods. In: Windhorst U, Johansson H, editors. Modern techniques in neuroscience research: Springer; 1999. p. 1211–41.
    1. Taub E, Uswatte G, Mark VW, Morris DM, Barman J, Bowman MH, Bryson C, Delgado A, Bishop-McKay S. Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke. 2013;44(5):1383–1388. doi: 10.1161/STROKEAHA.111.000559.
    1. Rhode G, Morgan DP, Young KR. Generalization and maintenance of treatment gains of behaviorally handicapped students from resource rooms to regular classrooms using self-evaluation procedures. J Appl Behav Anal. 1983;16(2):171–188. doi: 10.1901/jaba.1983.16-171.
    1. Noland MP. The effects of self-monitoring and reinforcement on exercise adherence. Res Q Exerc Sport. 1989;60(3):216–224. doi: 10.1080/02701367.1989.10607443.
    1. Eyberg SM, Johnson SM. Multiple assessment of behavior modification with families: effects of contingency contracting and order of treated problems. J Consult Clin Psychol. 1974;42(4):594–606. doi: 10.1037/h0036723.
    1. Friedman RH. Automated telephone conversations to assess health behavior and deliver behavioral interventions. J Med Syst. 1998;22(2):95–102. doi: 10.1023/A:1022695119046.
    1. Sacco WP, Morrison AD, Malone JI. A brief, regular, proactive telephone “coaching” intervention for diabetes: rationale, description, and preliminary results. J Diabetes Complications. 2004;18(2):113–118. doi: 10.1016/S1056-8727(02)00254-4.
    1. Marcus AC, Heimendinger J, Wolfe P, Fairclough D, Rimer BK, Morra M, Warnecke R, Himes JH, Darrow SL, Davis SW, Julesberg K, Slevin-Perocchia R, Steelman M, Wooldridge J. A randomized trial of a brief intervention to increase fruit and vegetable intake: a replication study among callers to the CIS. Prev Med. 2001;33(3):204–216. doi: 10.1006/pmed.2001.0873.
    1. Wade SL, Michaud L, Brown TM. Putting the pieces together: preliminary efficacy of a family problem-solving intervention for children with traumatic brain injury. J Head Trauma Rehabil. 2006;21(1):57–67. doi: 10.1097/00001199-200601000-00006.
    1. Devellis BM, Blalock SJ, Hahn PM, Devellis RF, Hochbaum GM. Evaluation of a problem-solving intervention for patients with arthritis. Patient Educ Counsel. 1988;11(1):29–42. doi: 10.1016/0738-3991(88)90074-2.
    1. Glasgow RE, Toobert DJ, Barrera M, Jr, Strycker LA. Assessment of problem-solving: a key to successful diabetes self-management. J Behav Med. 2004;27(5):477–490. doi: 10.1023/B:JOBM.0000047611.81027.71.
    1. Writing Group for the Activity Counseling Trial Research G Effects of physical activity counseling in primary care: the Activity Counseling Trial: a randomized controlled trial. JAMA. 2001;286(6):677–687. doi: 10.1001/jama.286.6.677.
    1. Hallam J, Petosa R. A worksite intervention to enhance social cognitive theory constructs to promote exercise adherence. Am J Health Promot. 1998;13(1):4–7. doi: 10.4278/0890-1171-13.1.4.
    1. Chuang IC, Lin KC, Wu CY, Hsieh YW, Liu CT, Chen CL. Using Rasch analysis to validate the motor activity log and the lower functioning motor activity log in patients with stroke. Phys Ther. 2017;97(10):1030–1040. doi: 10.1093/ptj/pzx071.
    1. Lin KC, Chuang LL, Wu CY, Hsieh YW, Chang WY. Responsiveness and validity of three dexterous function measures in stroke rehabilitation. J Rehabil Res Dev. 2010;47(6):563–571. doi: 10.1682/JRRD.2009.09.0155.
    1. van der Lee JH, Beckerman H, Lankhorst GJ, Bouter LM. The responsiveness of the Action Research Arm test and the Fugl-Meyer Assessment scale in chronic stroke patients. J Rehabil Med. 2001;33(3):110–113. doi: 10.1080/165019701750165916.
    1. Rand D, Eng JJ. Predicting daily use of the affected upper extremity 1 year after stroke. J Stroke Cerebrovasc Dis. 2015;24(2):274–283. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.039.
    1. Lang CE, Edwards DF, Birkenmeier RL, Dromerick AW. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch Phys Med Rehabil. 2008;89(9):1693–1700. doi: 10.1016/j.apmr.2008.02.022.
    1. Seo NJ, Enders LR, Motawar B, Kosmopoulos ML, Fathi-Firoozabad M. The extent of altered digit force direction correlates with clinical upper extremity impairment in chronic stroke survivors. J Biomech. 2015;48(2):383–387. doi: 10.1016/j.jbiomech.2014.11.046.
    1. Seo NJ, Rymer WZ, Kamper DG. Altered digit force direction during pinch grip following stroke. Exp Brain Res. 2010;202(4):891–901. doi: 10.1007/s00221-010-2193-7.
    1. Vatinno AA, Schranz C, Simpson A, Ramakrishnan V, Bonilha L, Seo NJ. Predicting upper extremity motor improvement following therapy using EEG-based connectivity in chronic stroke. NeuroRehabilitation. 2022;50(1):105–113. doi: 10.3233/NRE-210171.
    1. Fritz SL, Blanton S, Uswatte G, Taub E, Wolf SL. Minimal detectable change scores for the Wolf Motor Function Test. Neurorehabil Neural Repair. 2009;23(7):662–667. doi: 10.1177/1545968309335975.
    1. Lin KC, Hsieh YW, Wu CY, Chen CL, Jang Y, Liu JS. Minimal detectable change and clinically important difference of the Wolf Motor Function Test in stroke patients. Neurorehabil Neural Repair. 2009;23(5):429–434. doi: 10.1177/1545968308331144.
    1. Lin KC, Fu T, Wu CY, Wang YH, Liu JS, Hsieh CJ, Lin SF. Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabil Neural Repair. 2010;24(5):486–492. doi: 10.1177/1545968309356295.
    1. Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009;23(5):435–440. doi: 10.1177/1545968308331146.
    1. Freyer F, Reinacher M, Nolte G, Dinse HR, Ritter P. Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. Front Hum Neurosci. 2012;6:144. doi: 10.3389/fnhum.2012.00144.
    1. Morris DM, Uswatte G, Crago JE, Cook EW, 3rd, Taub E. The reliability of the wolf motor function test for assessing upper extremity function after stroke. Arch Phys Med Rehabil. 2001;82(6):750–755. doi: 10.1053/apmr.2001.23183.
    1. Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke. 2001;32(7):1635–1639. doi: 10.1161/01.STR.32.7.1635.
    1. Platz T, Pinkowski C, van Wijck F, Kim IH, di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clin Rehabil. 2005;19(4):404–411. doi: 10.1191/0269215505cr832oa.
    1. Desrosiers J, Bravo G, Hebert R, Dutil E, Mercier L. Validation of the Box and Block Test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1994;75(7):751–755. doi: 10.1016/0003-9993(94)90130-9.
    1. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22(1):78–90. doi: 10.1177/1545968307305353.
    1. Lin JH, Hsu MJ, Sheu CF, Wu TS, Lin RT, Chen CH, Hsieh CL. Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Phys Ther. 2009;89(8):840–850. doi: 10.2522/ptj.20080285.
    1. Duncan PW, Bode RK, Min Lai S, Perera S. Glycine Antagonist in Neuroprotection Americans I. Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003;84(7):950–963. doi: 10.1016/S0003-9993(03)00035-2.
    1. Seo NJ, Arun Kumar J, Hur P, Crocher V, Motawar B, Lakshminarayanan K. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. J Rehabil Res Dev. 2016;53(3):321–334. doi: 10.1682/JRRD.2015.03.0045.
    1. Urbin MA, Waddell KJ, Lang CE. Acceleration metrics are responsive to change in upper extremity function of stroke survivors. Arch Phys Med Rehabil. 2015;96(5):854–861. doi: 10.1016/j.apmr.2014.11.018.
    1. Connell LA, McMahon NE, Simpson LA, Watkins CL, Eng JJ. Investigating measures of intensity during a structured upper limb exercise program in stroke rehabilitation: an exploratory study. Arch Phys Med Rehabil. 2014;95(12):2410–2419. doi: 10.1016/j.apmr.2014.05.025.
    1. Rand D, Givon N, Weingarden H, Nota A, Zeilig G. Eliciting upper extremity purposeful movements using video games: a comparison with traditional therapy for stroke rehabilitation. Neurorehabil Neural Repair. 2014;28(8):733–739. doi: 10.1177/1545968314521008.
    1. Coker-Bolt P, Downey RJ, Connolly J, Hoover R, Shelton D, Seo NJ. Exploring the feasibility and use of accelerometers before, during, and after a camp-based CIMT program for children with cerebral palsy. J Pediatr Rehabil Med. 2017;10(1):27–36. doi: 10.3233/PRM-170408.
    1. Enders LR, Seo NJ. Altered phalanx force direction during power grip following stroke. Exp Brain Res. 2015;233(6):1677–1688. doi: 10.1007/s00221-015-4241-9.
    1. Enders LR, Seo NJ. Effects of sensory deficit on phalanx force deviation during power grip post stroke. J Mot Behav. 2017;49(1):55–66. doi: 10.1080/00222895.2016.1191416.
    1. Seo NJ, Fischer HW, Bogey RA, Rymer WZ, Kamper DG. Use of visual force feedback to improve digit force direction during pinch grip in persons with stroke: a pilot study. Arch Phys Med Rehabil. 2011;92(1):24–30. doi: 10.1016/j.apmr.2010.08.016.
    1. Blennerhassett JM, Matyas TA, Carey LM. Impaired discrimination of surface friction contributes to pinch grip deficit after stroke. Neurorehabil Neural Repair. 2007;21(3):263–272. doi: 10.1177/1545968306295560.
    1. Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res. 1984;56(3):550–564. doi: 10.1007/BF00237997.
    1. Hermsdorfer J, Hagl E, Nowak DA, Marquardt C. Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol. 2003;114(5):915–929. doi: 10.1016/S1388-2457(03)00042-7.
    1. Nowak DA, Hermsdorfer J, Glasauer S, Philipp J, Meyer L, Mai N. The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci. 2001;14(4):756–762. doi: 10.1046/j.0953-816x.2001.01697.x.
    1. Nowak DA, Hermsdorfer J. Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord. 2005;20(1):11–25. doi: 10.1002/mds.20299.
    1. Seo NJ. Dependence of safety margins in grip force on isometric push force levels in lateral pinch. Ergonomics. 2009;52(7):840–847. doi: 10.1080/00140130802578555.
    1. Baldassarre A, Ramsey LE, Siegel JS, Shulman GL, Corbetta M. Brain connectivity and neurological disorders after stroke. Curr Opin Neurol. 2016;29(6):706–713. doi: 10.1097/WCO.0000000000000396.
    1. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716–879713. doi: 10.1155/2011/879716.
    1. US Department of Health and Human Services National Institutes of Health National Cancer Institute. Common terminology criteria for adverse events (CTCAE) version 5.0 2017 [Accessed March 18th, 2022]. Available from: .
    1. NINDS. Adverse event relatedness scale 2017 [Accessed March 18th, 2022]. Available from: .
    1. Reviewing and reporting unanticipated problems involving risks to subjects or others and adverse events: OHRP Guidance (2007) 2007 [Accessed March 18th, 2022]. Available from: .

Source: PubMed

3
Suscribir