Senolytic Therapy to Modulate the Progression of Alzheimer's Disease (SToMP-AD): A Pilot Clinical Trial

M M Gonzales, V R Garbarino, E Marques Zilli, R C Petersen, J L Kirkland, T Tchkonia, N Musi, S Seshadri, S Craft, M E Orr, M M Gonzales, V R Garbarino, E Marques Zilli, R C Petersen, J L Kirkland, T Tchkonia, N Musi, S Seshadri, S Craft, M E Orr

Abstract

Preclinical studies indicate an age-associated accumulation of senescent cells across multiple organ systems. Emerging evidence suggests that tau protein accumulation, which closely correlates with cognitive decline in Alzheimer's disease and other tauopathies, drives cellular senescence in the brain. Pharmacologically clearing senescent cells in mouse models of tauopathy reduced brain pathogenesis. Compared to vehicle treated mice, intermittent senolytic administration reduced tau accumulation and neuroinflammation, preserved neuronal and synaptic density, restored aberrant cerebral blood flow, and reduced ventricular enlargement. Intermittent dosing of the senolytics, dasatinib plus quercetin, has shown an acceptable safety profile in clinical studies for other senescence-associated conditions. With these data, we proposed and herein describe the objectives and methods for a clinical vanguard study. This initial open-label clinical trial pilots an intermittent senolytic combination therapy of dasatinib plus quercetin in five older adults with early-stage Alzheimer's disease. The primary objective is to evaluate the central nervous system penetration of dasatinib and quercetin through analysis of cerebrospinal fluid collected at baseline and after 12 weeks of treatment. Further, through a series of secondary outcome measures to assess target engagement of the senolytic compounds and Alzheimer's disease-relevant cognitive, functional, and physical outcomes, we will collect preliminary data on safety, feasibility, and efficacy. The results of this study will be used to inform the development of a randomized, double-blind, placebo-controlled multicenter phase II trial to further explore of the safety, feasibility, and efficacy of senolytics for modulating the progression of Alzheimer's disease. Clinicaltrials.gov registration number and date: NCT04063124 (08/21/2019).

Keywords: Alzheimer’s disease; Clinical trial; cellular senescence; senolytic therapy; tau.

Conflict of interest statement

Dr. Gonzales reports grants from ADDF, grants from UTHSCA Center for Biomedical Neuroscience, grants from the Coordinating Center for Claude D. Pepper Older Americans Independence Centers, during the conduct of the study. Drs. Zilli and Garbarino have nothing to disclose. Dr. Petersen reports grants from Alzheimer’s Drug Discovery Foundation, during the conduct of the study; personal fees from Roche, personal fees from Merck, personal fees from Biogen, personal fees from Eisai, personal fees from Genentech, outside the submitted work. Dr. Kirkland reports grants from ADDF, during the conduct of the study. In addition, Dr. Kirkland has a patent Killing Senescent Cells and Treating Senescence-Associated Conditions Using a SRC Inhibitor and a Flavonoid with royalties paid to Unity Biotechnologies, and a patent Treating Cognitive Decline and Other Neurodegenerative Conditions by Selectively Removing Senescent Cells from Neurological Tissue with royalties paid to Unity Biotechnologies. Dr. Tchkonia reports grants from ADDF, during the conduct of the study. In addition, Dr. Tchkonia has a patent Killing Senescent Cells and Treating Senescence-Associated Conditions Using a SRC Inhibitor and a Flavonoid with royalties paid to Unity Biotechnologies, and a patent Treating Cognitive Decline and Other Neurodegenerative Conditions by Selectively Removing Senescent Cells from Neurological Tissue with royalties paid to Unity Biotechnologies. Dr. Musi reports grants from ADDF, grants from UTHSCSA Center for Biomedical Neuroscience, grants from the Coordinating Center for Claude D. Pepper Older Americans Independence Centers, during the conduct of the study. Dr. Seshadri reports grants from ADDF, grants from UTHSCSA Center for Biomedical Neuroscience, during the conduct of the study. Dr. Craft reports grants from ADDF, grants from the Coordinating Center for Claude D. Pepper Older Americans Independence Centers, during the conduct of the study; other from vTv Therapeutics, other from Cylcerion, other from T3D Therapeutics, from Cognito Therapeutics, outside the submitted work. Dr. Orr reports grants from ADDF, grants from UTHSCSA Center for Biomedical Neuroscience, grants from the Coordinating Center for Claude D. Pepper Older Americans Independence Centers, during the conduct of the study. In addition, Dr. Orr has a patent Biosignature and therapeutic approach for neuronal senescence pending.

Figures

Figure 1
Figure 1
Outline of study timeline and major measures collected at each visit Primary and secondary outcomes are indicated by black checkmarks under each relevant visit where their collection falls. Outcomes, relevant to safety monitory measures are indicated by the gray arrow across the top, and will be assessed at every study visit (V(-1)-V10). BBB= blood brain barrier, Tx = Treatment, EOS= End of Study.

References

    1. Wong-Fupuy C, Haberman S. Projecting mortality trends: Recent developments in the United Kingdom and the United States. N Am Actuar J. 2004;8(2):56–83. doi: 10.1080/10920277.2004.10596137.
    1. Prince M, Ali G-C, Guerchet M, Prina AM, Albanese E, Wu Y-T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimer’s Res Ther. 2016;8(1):23. doi: 10.1186/s13195-016-0188-8.
    1. Rana JS, Khan SS, Lloyd-Jones DM, Sidney S. Changes in mortality in top 10 causes of death from 2011 to 2018. J Gen Intern Med. 2020:1–2.
    1. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019;5:272–93. doi: 10.1016/j.trci.2019.05.008.
    1. Yaffe K. Modifiable risk factors and prevention of dementia: what is the latest evidence? JAMA Intern Med. 2018;178(2):281–2. doi: 10.1001/jamainternmed.2017.7299.
    1. Brookmeyer R, Abdalla N. Multistate models and lifetime risk estimation: application to Alzheimer’s disease. Stat Med. 2019;38(9):1558–65. doi: 10.1002/sim.8056.
    1. Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111–28. doi: 10.31887/DCNS.2009.11.2/cqiu.
    1. Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med. 2019;11(476):eaar4289. doi: 10.1126/scitranslmed.aar4289.
    1. Xia X, Jiang Q, McDermott J, Han JDJ. Aging and Alzheimer’s disease: comparison and associations from molecular to system level. Aging Cell. 2018;17(5):e12802. doi: 10.1111/acel.12802.
    1. Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell. 2019;18(3):e12931. doi: 10.1111/acel.12931.
    1. Nath KA, O’Brien DR, Croatt AJ, et al. The murine dialysis fistula model exhibits a senescence phenotype: pathobiologic mechanisms and therapeutic potential. Am J Physiol Renal Physiol. 2018;315(5):F1493–F9. doi: 10.1152/ajprenal.00308.2018.
    1. Ogrodnik M, Miwa S, Tchkonia T, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691. doi: 10.1038/ncomms15691.
    1. Ogrodnik M, Zhu Y, Langhi LGP, et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2019;29(5):1061–77.e8. doi: 10.1016/j.cmet.2018.12.008.
    1. Palmer AK, Xu M, Zhu Y, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell. 2019;18(3):e12950. doi: 10.1111/acel.12950.
    1. Roos CM, Zhang B, Palmer AK, et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016;15(5):973–7. doi: 10.1111/acel.12458.
    1. Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532. doi: 10.1038/ncomms14532.
    1. Tchkonia T, Kirkland JL. Aging, cell senescence, and chronic disease: emerging therapeutic strategies. JAMA. 2018;320(13):1319–20. doi: 10.1001/jama.2018.12440.
    1. Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8).
    1. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. doi: 10.1111/acel.12344.
    1. Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care. 2014;17(4):324–8. doi: 10.1097/MCO.0000000000000065.
    1. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46. doi: 10.1038/nature13193.
    1. Kritsilis M V, Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci. 2018;19(10):2937. doi: 10.3390/ijms19102937.
    1. Sharma V, Gilhotra R, Dhingra D, Gilhotra N. Possible underlying influence of p38MAPK and NF-κB in the diminished anti-anxiety effect of diazepam in stressed mice. J Pharmacol Sci. 2011;116(3):257–63. doi: 10.1254/jphs.11026FP.
    1. Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90. doi: 10.1038/ncb2784.
    1. Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ. MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol Cell. 2015;59(5):719–31. doi: 10.1016/j.molcel.2015.07.011.
    1. Hoare M, Ito Y, Kang T-W, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18(9):979–92. doi: 10.1038/ncb3397.
    1. Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. doi: 10.1159/000484629.
    1. Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018;128(4):1208–16. doi: 10.1172/JCI95145.
    1. Musi N, Valentine JM, Sickora KR, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840. doi: 10.1111/acel.12840.
    1. Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22(5):719–28. doi: 10.1038/s41593-019-0372-9.
    1. Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell. 2004;3(4):169–76. doi: 10.1111/j.1474-9728.2004.00101.x.
    1. Gerdes EOW, Zhu Y, Weigand BM, et al. Cellular senescence in aging and age-related diseases: Implications for neurodegenerative diseases. Int Rev Neurobiol. 2020;155:203–34. doi: 10.1016/bs.irn.2020.03.019.
    1. Laurent C, Buée L, Blum D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed J. 2018;41(1):21–33. doi: 10.1016/j.bj.2018.01.003.
    1. Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56. doi: 10.1016/j.ebiom.2019.08.069.
    1. Das J, Chen P, Norris D, et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem. 2006;49(23):6819–32. doi: 10.1021/jm060727j.
    1. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36. doi: 10.1111/joim.13141.
    1. Kantarjian H, Jabbour E, Grimley J, Kirkpatrick P. Dasatinib. 2006(9):717–8.
    1. Formica J, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. doi: 10.1016/0278-6915(95)00077-1.
    1. Srivastava AK. Inhibition of phosphorylase kinase, and tyrosine protein kinase activities by quercetin. Biochem Biophys Res Commun. 1985;131(1):1–5. doi: 10.1016/0006-291X(85)91761-9.
    1. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63. doi: 10.1016/j.ebiom.2018.12.052.
    1. Porkka K, Koskenvesa P, Lundán T, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–12. doi: 10.1182/blood-2008-02-140665.
    1. Ishisaka A, Ichikawa S, Sakakibara H, et al. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med. 2011;51(7):1329–36. doi: 10.1016/j.freeradbiomed.2011.06.017.
    1. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35. doi: 10.1111/acel.12445.
    1. Masiello D, Gorospe G, 3rd, Yang AS. The occurrence and management of fluid retention associated with TKI therapy in CML, with a focus on dasatinib. J Hematol Oncol. 2009;2:46. doi: 10.1186/1756-8722-2-46.
    1. Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–M94. doi: 10.1093/geronj/49.2.M85.
    1. Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–81. doi: 10.1016/j.neuroimage.2012.01.021.
    1. Thorogood A, Mäki-Petäjä-Leinonen A, Brodaty H, et al. Consent recommendations for research and international data sharing involving persons with dementia. Alzheimers Dement. 2018;14(10):1334–43. doi: 10.1016/j.jalz.2018.05.011.
    1. Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302. doi: 10.1016/j.neuron.2014.12.032.
    1. Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011;89(25–26):939–45. doi: 10.1016/j.lfs.2011.09.023.
    1. Wang DM, Li SQ, Wu WL, Zhu XY, Wang Y, Yuan HY. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res. 2014;39(8):1533–43. doi: 10.1007/s11064-014-1343-x.
    1. Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93:134–45. doi: 10.1016/j.neuropharm.2015.01.027.
    1. Nakajima A, Aoyama Y, Shin EJ, et al. Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer’s disease (3XTg-AD) Behav Brain Res. 2015;289:69–77. doi: 10.1016/j.bbr.2015.04.028.
    1. Sprycel prescribing information . Sprycel U.S. product information. Princeton, NJ: Bristol Myers Squibb Company; 2018. pp. 1–47.
    1. Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9. doi: 10.1038/nm.4385.
    1. Parikh P, Britt RD, Jr., Manlove LJ, et al. Hyperoxia-Induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. Am J Respir Call Mol Biol. 2018;61(1):51–60. doi: 10.1165/rcmb.2018-0176OC.
    1. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, et al. Identification of HSP90 inhibitors as senolytics for extending healthspan. Nat Commun. 2017;8(1):422. doi: 10.1038/s41467-017-00314-z.
    1. DiBattista AM, Sierra F, Masliah E. NIA workshop on senescence in brain aging and Alzheimer’s disease and its related dementias. GeroScience. 2020;42(2):389–96. doi: 10.1007/s11357-020-00153-9.
    1. Tuttle CSL, Waaijer MEC, Slee-Valentijn MS, Stijnen T, Westendorp R, Maier AB. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell. 2020;19(2):e13083. doi: 10.1111/acel.13083.
    1. Mattsson N, Schöll M, Strandberg O, et al. (18)F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease. EMBO Mol Med. 2017;9(9):1212–23. doi: 10.15252/emmm.201707809.
    1. Jack CR, Jr., Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018;141(5):1517–28. doi: 10.1093/brain/awy059.
    1. Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. doi: 10.1016/j.ebiom.2018.09.015.
    1. Kim EC, Kim JR. Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep. 2019;52(1):47–55. doi: 10.5483/BMBRep.2019.52.1.293.
    1. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562(7728):578–82. doi: 10.1038/s41586-018-0543-y.
    1. Bryant AG, Hu M, Carlyle BC, et al. Cerebrovascular senescence is associated with tau pathology in Alzheimer’s disease. Front Neurol. 2020;11:575953. doi: 10.3389/fneur.2020.575953.

Source: PubMed

3
Suscribir