Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles

Chiraz Hamimi, Annie David, Pierre Versmisse, Laurence Weiss, Timothée Bruel, David Zucman, Victor Appay, Arnaud Moris, Marie-Noëlle Ungeheuer, Caroline Lascoux-Combe, Françoise Barré-Sinoussi, Michaela Muller-Trutwin, Faroudy Boufassa, Olivier Lambotte, Gianfranco Pancino, Asier Sáez-Cirión, ANRS CO21 CODEX cohort, Chiraz Hamimi, Annie David, Pierre Versmisse, Laurence Weiss, Timothée Bruel, David Zucman, Victor Appay, Arnaud Moris, Marie-Noëlle Ungeheuer, Caroline Lascoux-Combe, Françoise Barré-Sinoussi, Michaela Muller-Trutwin, Faroudy Boufassa, Olivier Lambotte, Gianfranco Pancino, Asier Sáez-Cirión, ANRS CO21 CODEX cohort

Abstract

HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Susceptibility of MDDCs from HIC…
Fig 1. Susceptibility of MDDCs from HIC and HD to HIV-1 infection.
(A) Kinetic of HIV-1 BaL replication in MDDC from three HIC (red) and three HD (blue) in three independent and representative examples. p24 production in culture supernatants is represented as the mean ± SD of 3 independent cultures for each individual. (B) Kinetic of HIV-1 Bal production in supernatant of HIC and HD MDDC’s. p24 production in culture supernatants is represented as the mean ± IQR of 34 HD and 42 HIC. (* p<0.05; ** p<0.01; *** p<0.001) (C) Viral production at peak of infection in culture supernatants. Symbols represent the average (n = 3 independent experiments) of p24 values detected in culture supernatants for each subject (HD n = 34 and HIC n = 42). Horizontal lines represent median ± interquartile values for each group.
Fig 2. Capture of HIV-1 Bal by…
Fig 2. Capture of HIV-1 Bal by MDDC.
Cell-associated p24 levels 4h after exposure to virus. Symbols represent the average p24 levels (n = 3 independent experiments) for each individual (HDs n = 47, HICs n = 44 and cARTs n = 14). Horizontal lines represent median ± interquartile values for each group.
Fig 3. Antigen uptake and degradation by…
Fig 3. Antigen uptake and degradation by MDDC.
Dextran uptake (A) and ovalbumine uptake and degradation (B) by MDDC from HDs, HICs and cARTs. Top panels are examples with cells from three representative individuals of each group (light grey is the negative control, blue is one HD, red one HIC and dark grey is a cART). Bottom panels present the summary of all the experiments performed. Each circle represents one individual, and the horizontal lines represent the median ± interquartile values for each group (HD n = 31, HIC n = 23 and cART n = 16).
Fig 4. Expression of surface receptors on…
Fig 4. Expression of surface receptors on MDDC.
(A) Expression levels of CD4, CXCR4 and CCR5 on MDDC from HDs (n = 11), HICs (n = 12) and cARTs (n = 18). (B) Idem for DC-SIGN, MMR and Syndecan-3 (HDs n = 19, HICs n = 14 and cARTs (n = 13). Each symbol represents one individual and horizontal lines represent the median ± interquartile for each group. * represents p<0.05; ** represents p<0.01. (C) Correlations between the levels of p24 captured by MDDC and their surface expression of MMR, DC-SIGN and Syndecan-3. Each symbol represents data obtained with cells from one patients (n = 29).

References

    1. Saez-Cirion A, Pancino G. HIV controllers: a genetically determined or inducible phenotype? Immunol Rev. 2013;254(1):281–94. Epub 2013/06/19. 10.1111/imr.12076 .
    1. Walker BD, Yu XG. Unravelling the mechanisms of durable control of HIV-1. Nat Rev Immunol. 2013;13(7):487–98. Epub 2013/06/26. 10.1038/nri3478 .
    1. Saez-Cirion A, Sinet M, Shin SY, Urrutia A, Versmisse P, Lacabaratz C, et al. Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses. J Immunol. 2009;182(12):7828–37. Epub 2009/06/06. 10.4049/jimmunol.0803928 .
    1. Sáez-Cirión A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, Boufassa F, et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar CTL activation phenotype. Proc Natl Acad Sci U S A. 2007;104(16):6776–81.
    1. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107(12):4781–9. Epub 2006/02/10. 10.1182/blood-2005-12-4818
    1. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW, et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol. 2002;3(11):1061–8. Epub 2002/10/09. 10.1038/ni845 .
    1. Saez-Cirion A, Shin SY, Versmisse P, Barre-Sinoussi F, Pancino G. Ex vivo T cell-based HIV suppression assay to evaluate HIV-specific CD8+ T-cell responses. Nat Protoc. 2010;5(6):1033–41. Epub 2010/06/12. 10.1038/nprot.2010.73 .
    1. Hersperger AR, Pereyra F, Nason M, Demers K, Sheth P, Shin LY, et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 2010;6(5):e1000917 Epub 2010/06/05. 10.1371/journal.ppat.1000917
    1. Migueles SA, Osborne CM, Royce C, Compton AA, Joshi RP, Weeks KA, et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity. 2008;29(6):1009–21. Epub 2008/12/09. 10.1016/j.immuni.2008.10.010
    1. Flores-Villanueva PO, Yunis EJ, Delgado JC, Vittinghoff E, Buchbinder S, Leung JY, et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc Natl Acad Sci U S A. 2001;98(9):5140–5. .
    1. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A. 2000;97(6):2709–14. .
    1. Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, Bornstein E, et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. The Journal of experimental medicine. 2007;204(10):2473–85. .
    1. Lecuroux C, Saez-Cirion A, Girault I, Versmisse P, Boufassa F, Avettand-Fenoel V, et al. Both HLA-B*57 and plasma HIV RNA levels contribute to the HIV-specific CD8+ T cell response in HIV controllers. J Virol. 2014;88(1):176–87. 10.1128/JVI.02098-13
    1. Emu B, Sinclair E, Hatano H, Ferre A, Shacklett B, Martin JN, et al. HLA class I-restricted T-cell responses may contribute to the control of human immunodeficiency virus infection, but such responses are not always necessary for long-term virus control. J Virol. 2008;82(11):5398–407. 10.1128/JVI.02176-07
    1. Xu RH, Remakus S, Ma X, Roscoe F, Sigal LJ. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLoS pathogens. 2010;6(2):e1000768 Epub 2010/02/20. 10.1371/journal.ppat.1000768
    1. van Montfoort N, van der Aa E, Woltman AM. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines. Front Immunol. 2014;5:182 Epub 2014/05/06. 10.3389/fimmu.2014.00182
    1. Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, Mascola JR, et al. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. Journal of virology. 2005;79(14):8861–9. Epub 2005/07/05. 10.1128/JVI.79.14.8861-8869.2005
    1. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 2011;474(7353):654–7. Epub 2011/05/27. 10.1038/nature10117
    1. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. 2012;13(3):223–8. Epub 2012/02/14. 10.1038/ni.2236 .
    1. Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, et al. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem. 2013;288(12):8101–10. Epub 2013/02/01. 10.1074/jbc.M112.431148
    1. Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature. 2010;467(7312):214–7. Epub 2010/09/11. 10.1038/nature09337
    1. Saez-Cirion A, Hamimi C, Bergamaschi A, David A, Versmisse P, Melard A, et al. Restriction of HIV-1 replication in macrophages and CD4+ T cells from HIV controllers. Blood. 2011;118(4):955–64. 10.1182/blood-2010-12-327106
    1. Chen H, Li C, Huang J, Cung T, Seiss K, Beamon J, et al. CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21. J Clin Invest. 2011;121(4):1549–60. Epub 2011/03/16. 10.1172/JCI44539
    1. Buzon MJ, Seiss K, Weiss R, Brass AL, Rosenberg ES, Pereyra F, et al. Inhibition of HIV-1 integration in ex vivo-infected CD4 T cells from elite controllers. J Virol. 2011;85(18):9646–50. Epub 2011/07/08. 10.1128/JVI.05327-11
    1. Martin-Gayo E, Buzon MJ, Ouyang Z, Hickman T, Cronin J, Pimenova D, et al. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers. PLoS Pathog. 2015;11(6):e1004930 10.1371/journal.ppat.1004930
    1. Manel N, Littman DR. Hiding in plain sight: how HIV evades innate immune responses. Cell. 2011;147(2):271–4. Epub 2011/10/18. 10.1016/j.cell.2011.09.010
    1. Harman AN, Lai J, Turville S, Samarajiwa S, Gray L, Marsden V, et al. HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood. 2011;118(2):298–308. Epub 2011/03/18. 10.1182/blood-2010-07-297721
    1. Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(20):7669–74. Epub 2004/05/07. 10.1073/pnas.0402431101
    1. Macatonia SE, Lau R, Patterson S, Pinching AJ, Knight SC. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology. 1990;71(1):38–45. Epub 1990/09/01.
    1. de Witte L, Bobardt M, Chatterji U, Degeest G, David G, Geijtenbeek TB, et al. Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(49):19464–9. Epub 2007/11/28. 10.1073/pnas.0703747104
    1. Hong PW, Flummerfelt KB, de Parseval A, Gurney K, Elder JH, Lee B. Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. Journal of virology. 2002;76(24):12855–65. Epub 2002/11/20.
    1. Lai J, Bernhard OK, Turville SG, Harman AN, Wilkinson J, Cunningham AL. Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1. The Journal of biological chemistry. 2009;284(17):11027–38. Epub 2009/02/20. 10.1074/jbc.M809698200
    1. Moris A, Nobile C, Buseyne F, Porrot F, Abastado JP, Schwartz O. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood. 2004;103(7):2648–54. Epub 2003/10/25. 10.1182/blood-2003-07-2532 .
    1. Singh SK, Stephani J, Schaefer M, Kalay H, Garcia-Vallejo JJ, den Haan J, et al. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Mol Immunol. 2009;47(2–3):164–74. Epub 2009/10/13. 10.1016/j.molimm.2009.09.026 .
    1. Garcia-Vallejo JJ, Ambrosini M, Overbeek A, van Riel WE, Bloem K, Unger WW, et al. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells. Mol Immunol. 2013;53(4):387–97. Epub 2012/10/30. 10.1016/j.molimm.2012.09.012 .
    1. Unger WW, van Beelen AJ, Bruijns SC, Joshi M, Fehres CM, van Bloois L, et al. Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. J Control Release. 2012;160(1):88–95. Epub 2012/03/01. 10.1016/j.jconrel.2012.02.007 .
    1. Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science. 2007;316(5824):612–6. Epub 2007/04/28. 10.1126/science.1137971 .
    1. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000;100(5):587–97. Epub 2000/03/18. .
    1. Nguyen DG, Hildreth JE. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur J Immunol. 2003;33(2):483–93. Epub 2003/03/21. 10.1002/immu.200310024 .
    1. Vingert B, Benati D, Lambotte O, de Truchis P, Slama L, Jeannin P, et al. HIV controllers maintain a population of highly efficient Th1 effector cells in contrast to patients treated in the long term. Journal of virology. 2012;86(19):10661–74. Epub 2012/07/28. 10.1128/JVI.00056-12
    1. Vingert B, Perez-Patrigeon S, Jeannin P, Lambotte O, Boufassa F, Lemaitre F, et al. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. PLoS pathogens. 2010;6(2):e1000780 Epub 2010/03/03. 10.1371/journal.ppat.1000780
    1. Palmer P, Tovey MG, Raschilas F, Brassart L, Meritet JF, Porcher R, et al. Type I interferon subtypes produced by human peripheral mononuclear cells from one normal donor stimulated by viral and non-viral inducing factors. Eur Cytokine Netw. 2007;18(2):108–14. Epub 2007/06/28. 10.1684/ecn.2007.0093 .

Source: PubMed

3
Suscribir