The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals

Zezheng Pan, Mengli Sun, Xia Liang, Jia Li, Fangyue Zhou, Zhisheng Zhong, Yuehui Zheng, Zezheng Pan, Mengli Sun, Xia Liang, Jia Li, Fangyue Zhou, Zhisheng Zhong, Yuehui Zheng

Abstract

The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.

Figures

Figure 1
Figure 1
The isolation and identification of putative FGSCs. (a) H&E stained from histological ovaries sections: putative FGSCs have been considered to be mainly localized in ovarian cortex. (b) IHC results: putative FGSCs were detected by stem cell marker Oct-4 antibody. (c) Putative FGSCs were isolated by primary culture method. Arrows: the freshly isolated putative FGSCs. (d) Arrows: the isolated MVH+ putative FGSCs. (e) Green: the isolated BrdU+ cells. (f) The merger of (d) and (e) by dual immunofluorescence.
Figure 2
Figure 2
The existing challenge of putative FGSCs. ((a) and (b)) The putative FGSCs exact positioning in OSE or ovarian cortex. (c) The “niche” signals regulate PGC to differentiate into putative FGSCs. (d) Is there a putative FGSCs specific marker in cell membrane?

References

    1. Brinster R. L. Male germline stem cells: from mice to men. Science. 2007;316(5823):404–405. doi: 10.1126/science.1137741.
    1. Guo Y., Hai Y., Gong Y., Li Z., He Z. Characterization, isolation, and culture of mouse and human spermatogonial stem cells. Journal of Cellular Physiology. 2014;229(4):407–413. doi: 10.1002/jcp.24471.
    1. Goossens E., Van Saen D., Tournaye H. Spermatogonial stem cell preservation and transplantation: from research to clinic. Human Reproduction. 2013;28(4):897–907. doi: 10.1093/humrep/det039.
    1. Johnson J., Canning J., Kaneko T., Pru J. K., Tilly J. L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145–150. doi: 10.1038/nature02316.
    1. Bukovsky A. Oogenesis from human somatic stem cells and a role of immune adaptation in premature ovarian failure. Current Stem Cell Research &; Therapy. 2006;1(3):289–303. doi: 10.2174/157488806778226795.
    1. Wong M. D., Jin Z., Xie T. Molecular mechanisms of germline stem cell regulation. Annual Review of Genetics. 2005;39:173–195. doi: 10.1146/annurev.genet.39.073003.105855.
    1. Xie T., Spradling A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290(5490):328–330. doi: 10.1126/science.290.5490.328.
    1. Lin H., Spradling A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary . Development. 1997;124(12):2463–2476.
    1. Lim R. S., Osato M., Kai T. Isolation of undifferentiated female germline cells from adult Drosophila ovaries. Current Protocols in Stem Cell Biology. 2012;(chapter 2, unit 2E.3)
    1. Xuan T., Xin T., He J., et al. DBre1/dSet1-dependent pathway for histone H3K4 trimethylation has essential roles in controlling germline stem cell maintenance and germ cell differentiation in the Drosophila ovary. Developmental Biology. 2013;379(2):167–181. doi: 10.1016/j.ydbio.2013.04.015.
    1. Ma X., Wang S., Do T., et al. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0090267.e90267
    1. Xin T., Xuan T., Tan J., Li M., Zhao G., Li M. The Drosophila putative histone acetyltransferase Enok maintains female germline stem cells through regulating Bruno and the niche. Developmental Biology. 2013;384(1):1–12. doi: 10.1016/j.ydbio.2013.10.001.
    1. Kimble J., Crittenden S. L. Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans . Annual Review of Cell and Developmental Biology. 2007;23:405–433. doi: 10.1146/annurev.cellbio.23.090506.123326.
    1. Nadarajan S., Govindan J. A., McGovern M., Hubbard E. J. A., Greenstein D. MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans . Development. 2009;136(13):2223–2234. doi: 10.1242/dev.034603.
    1. Angelo G., Van Gilst M. R. Starvation protects germline stem cells and extends reproductive longevity in C. elegans . Science. 2009;326(5955):954–958. doi: 10.1126/science.1178343.
    1. Nakamura S., Kobayashi K., Nishimura T., Higashijima S.-I., Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science. 2010;328(5985):1561–1563. doi: 10.1126/science.1185473.
    1. Wong T.-T., Tesfamichael A., Collodi P. Production of zebrafish offspring from cultured female germline stem cells. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0062660.e62660
    1. Johnson J., Bagley J., Skaznik-Wikiel M., et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122(2):303–315. doi: 10.1016/j.cell.2005.06.031.
    1. Kerr J. B., Duckett R., Myers M., Britt K. L., Mladenovska T., Findlay J. K. Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction. 2006;132(1):95–109. doi: 10.1530/rep.1.01128.
    1. Niikura Y., Niikura T., Tilly J. L. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging. 2009;1(12):971–978.
    1. Virant-Klun I., Zech N., Rožman P., et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76(8):843–856. doi: 10.1111/j.1432-0436.2008.00268.x.
    1. Zhang D., Fouad H., Zoma W. D., Salama S. A., Wentz M. J., Al-Hendy A. Expression of stem and germ cell markers within nonfollicle structures in adult mouse ovary. Reproductive Sciences. 2008;15(2):139–146. doi: 10.1177/1933719107310708.
    1. Zou K., Yuan Z., Yang Z., et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nature Cell Biology. 2009;11(5):631–636. doi: 10.1038/ncb1869.
    1. Green S. H., Zuckerman S. The number of oocytes in the mature rhesus monkey (Macaca mulatta) The Journal of endocrinology. 1951;7(2):194–202. doi: 10.1677/joe.0.0070194.
    1. Liu Y., Wu C., Lyu Q., et al. Germline stem cells and neo-oogenesis in the adult human ovary. Developmental Biology. 2007;306(1):112–120. doi: 10.1016/j.ydbio.2007.03.006.
    1. Bristol-Gould S. K., Kreeger P. K., Selkirk C. G., et al. Fate of the initial follicle pool: empirical and mathematical evidence supporting its sufficiency for adult fertility. Developmental Biology. 2006;298(1):149–154. doi: 10.1016/j.ydbio.2006.06.023.
    1. Begum S., Papaioannou V. E., Gosden R. G. The oocyte population is not renewed in transplanted or irradiated adult ovaries. Human Reproduction. 2008;23(10):2326–2330. doi: 10.1093/humrep/den249.
    1. Eggan K., Jurga S., Gosden R., Min I. M., Wagers A. J. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature. 2006;441(7097):1109–1114. doi: 10.1038/nature04929.
    1. Hashimoto H., Sudo T., Mikami Y., et al. Germ cell specific protein VASA is over-expressed in epithelial ovarian cancer and disrupts DNA damage-induced G2 checkpoint. Gynecologic Oncology. 2008;111(2):312–319. doi: 10.1016/j.ygyno.2008.08.014.
    1. Titus S., Li F., Stobezki R., et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Science Translational Medicine. 2013;5(172) doi: 10.1126/scitranslmed.3004925.172ra21
    1. Zhang H., Zheng W., Shen Y., Adhikari D., Ueno H., Liu K. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(31):12580–12585. doi: 10.1073/pnas.1206600109.
    1. Lei L., Spradling A. C. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(21):8585–8590. doi: 10.1073/pnas.1306189110.
    1. Yuan J., Zhang D., Wang L., et al. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells. 2013;31(11):2538–2550. doi: 10.1002/stem.1480.
    1. Zou K., Hou L., Sun K., Xie W., Wu J. Improved efficiency of female germline stem cell purification using fragilis-based magnetic bead sorting. Stem Cells and Development. 2011;20(12):2197–2204. doi: 10.1089/scd.2011.0091.
    1. Pacchiarotti J., Maki C., Ramos T., et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation. 2010;79(3):159–170. doi: 10.1016/j.diff.2010.01.001.
    1. Pesce M., Wang X., Wolgemuth D. J., Schöler H. R. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mechanisms of Development. 1998;71(1-2):89–98. doi: 10.1016/S0925-4773(98)00002-1.
    1. Hu Y., Bai Y., Chu Z., et al. GSK3 inhibitor-BIO regulates proliferation of female germline stem cells from the postnatal mouse ovary. Cell Proliferation. 2012;45(4):287–298. doi: 10.1111/j.1365-2184.2012.00821.x.
    1. Woods D. C., Tilly J. L. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nature Protocols. 2013;8(5):966–988. doi: 10.1038/nprot.2013.047.
    1. Terraciano P., Garcez T., Ayres L., et al. Cell therapy for chemically induced ovarian failure in mice. Stem Cells International. 2014;2014:8. doi: 10.1155/2014/720753.720753
    1. Wang H., Jiang M., Bi H., et al. Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. Journal of Molecular Cell Biology. 2014;6(2):164–171. doi: 10.1093/jmcb/mju004.
    1. Zhou L., Wang L., Kang J. X., et al. Production of fat-1 transgenic rats using a post-natal female germline stem cell line. Molecular Human Reproduction. 2014;20(3):271–281. doi: 10.1093/molehr/gat081.
    1. Bai Y., Yu M., Hu Y., et al. Location and characterization of female germline stem cells (FGSCs) in juvenile porcine ovary. Cell Proliferation. 2013;46(5):516–528. doi: 10.1111/cpr.12058.
    1. Parte S., Bhartiya D., Telang J., et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells and Development. 2011;20(8):1451–1464. doi: 10.1089/scd.2010.0461.
    1. Fujiwara Y., Komiya T., Kawabata H., et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(25):12258–12262. doi: 10.1073/pnas.91.25.12258.
    1. Kobayashi T., Kajiura-Kobayashi H., Nagahama Y. Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus . Mechanisms of Development. 2000;99(1-2):139–142. doi: 10.1016/s0925-4773(00)00464-0.
    1. Noce T., Okamoto-Ito S., Tsunekawa N. Vasa homolog genes in mammalian germ cell development. Cell Structure and Function. 2001;26(3):131–136. doi: 10.1247/csf.26.131.
    1. White Y. A. R., Woods D. C., Takai Y., Ishihara O., Seki H., Tilly J. L. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Medicine. 2012;18(3):413–421. doi: 10.1038/nm.2669.
    1. Virant-Klun I., Skutella T., Stimpfel M., Sinkovec J. Ovarian surface epithelium in patients with severe ovarian infertility: a potential source of cells expressing markers of pluripotent/multipotent stem cells. Journal of Biomedicine and Biotechnology. 2011;2011:12. doi: 10.1155/2011/381928.381928
    1. Zhang Y., Yang Z., Yang Y., et al. Production of transgenic mice by random recombination of targeted genes in female germline stem cells. Journal of Molecular Cell Biology. 2011;3(2):132–141. doi: 10.1093/jmcb/mjq043.
    1. Yang Z., Wu J. Mouse dynein axonemal intermediate chain 2: cloning and expression. DNA and Cell Biology. 2008;27(9):479–488. doi: 10.1089/dna.2008.0752.
    1. Zhang Y., Wu J. I. Molecular cloning and characterization of a new gene, Oocyte-G1 . Journal of Cellular Physiology. 2009;218(1):75–83. doi: 10.1002/jcp.21569.
    1. Ko K., Araúzo-Bravo M. J., Kim J., Stehling M., Schöler H. R. Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nature Protocols. 2010;5(5):921–928. doi: 10.1038/nprot.2010.44.
    1. Izadyar F., Pau F., Marh J., et al. Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction. 2008;135(6):771–784. doi: 10.1530/rep-07-0479.
    1. Lim J. J., Kim H. J., Kim K.-S., Hong J. Y., Lee D. R. In vitro culture-induced pluripotency of human spermatogonial stem cells. BioMed Research International. 2013;2013:9. doi: 10.1155/2013/143028.143028

Source: PubMed

3
Suscribir