Intrathecal Infusion of Autologous Adipose-Derived Regenerative Cells in Autoimmune Refractory Epilepsy: Evaluation of Safety and Efficacy

Elzbieta Szczepanik, Hanna Mierzewska, Dorota Antczak-Marach, Anna Figiel-Dabrowska, Iwona Terczynska, Jolanta Tryfon, Natalia Krzesniak, Bartlomiej Henryk Noszczyk, Ewa Sawicka, Krystyna Domanska-Janik, Anna Sarnowska, Elzbieta Szczepanik, Hanna Mierzewska, Dorota Antczak-Marach, Anna Figiel-Dabrowska, Iwona Terczynska, Jolanta Tryfon, Natalia Krzesniak, Bartlomiej Henryk Noszczyk, Ewa Sawicka, Krystyna Domanska-Janik, Anna Sarnowska

Abstract

Objective/Purpose. Evaluation of efficacy and safety of autologous adipose-derived regenerative cells (ADRCs) treatment in autoimmune refractory epilepsy. Patients. Six patients with proven or probable autoimmune refractory epilepsy (2 with Rasmussen encephalitis, 2 with antineuronal autoantibodies in serum, and 2 with possible FIRES) were included in the project with approval of the Bioethics Committee.

Method: Intrathecal injection of autologous ADRC acquired through liposuction followed by enzymatic isolation was performed. The procedure was repeated 3 times every 3 months with each patient. Neurological status, brain MRI, cognitive function, and antiepileptic effect were monitored during 12 months.

Results: Immediately after the procedure, all patients were in good condition. In some cases, transient mildly elevated body temperature, pain in regions of liposuction, and slight increasing number of seizures during 24 hours were observed. During the next months, some improvements in school, social functioning, and manual performance were observed in all patients. One patient has been seizure free up to the end of trial. In other patients, frequency of seizures was different: from reduced number to the lack of improvement (3-year follow-up).

Conclusion: Autologous ADRC therapy may emerge as a promising option for some patients with autoimmune refractory epilepsy. Based on our trial and other clinical data, the therapy appears to be safe and feasible. Antiepileptic efficacy proved to be various; however, some abilities improved in all children. No signs of psychomotor regression were observed during the first year following the treatment.

Conflict of interest statement

The authors declare that there is no a competing financial interest or conflict of interest regarding the publication of this paper.

Copyright © 2020 Elzbieta Szczepanik et al.

Figures

Scheme 1
Scheme 1
Scheme of patients' evaluation. The diagram presents the applied neurological and electrophysiological methods and psychological and biochemical assessment, along with their assignment to time of assessment.
Figure 1
Figure 1
EEG of patient no 3. (a, b) EEG before ARDC treatment (Nov. 2015): spike and spike-slow wave complex: continuous on the left temporal and centro-parieto-occipital region and frequent on the right centro-parietal region. (c) EEG after the last ARDC treatment (Apr. 2016): sharp waves and spikes: frequent on the left temporal and centro-parieto-occipital region and a few on the right centro-parietal region.
Figure 2
Figure 2
Qualitative assessment of cytokines in CSF. (a) Membrane-based antibody arrays for the parallel determination of the relative levels of human cytokines and chemokines from CSF of patients with epilepsy (from left side: P3, P4, and P6). (b) Table—detected and chosen analytes for luminex multiplex cytokine analysis method.
Figure 3
Figure 3
Photos of patient's notebook. (a) Before the first ADRC infusion. (b) 5 months after ADRC infusion—manual ability improvement is visible.
Figure 4
Figure 4
Intrathecal IgG synthesis. Gradual decrease in intrathecal synthesis of IgG after a 3- and 6-month ADRC treatment, followed by an increase in the next 6 months since the last administration; N < 0.01 mg/dl, P1-P6—resp., patient 1–6.
Figure 5
Figure 5
Quantitative analysis of cytokine and chemokine level in CSF during ADRC treatment. Comparison of Angiogenin, IL-10, CXCL10/SDF-1α, Osteopontin, and TNF-α concentration, determined by the Luminex multiplex cytokine analysis method, in CSF, before and after ADRC application (black graph bars/t1—before ADRC application, light grey bars/t2—3 months after 1st ADRC application, medium grey bars/t3—3 months after 2nd ADRC application, dark grey bars/t4—6 months after 3rd ADRC application, P3—respond patient number 3, P6—mild responder, P4—nonresponder.
Figure 6
Figure 6
ADRC in vitro analysis. (a) Flow cytometry analysis—surface markers analysis of ADRC. (b) Quantification of CFU frequency—P3: responder, P4: mild responder, P6: nonresponder, t2: ADRC isolated after 2nd liposuction, t3: ADRC isolated after 3rd liposuction. (c) CFU morphology from P3: (A) paraclone; (B) meroclone-like structures, scale bar—500 μM. (d) The morphology of ADRC derived from P3, scale bar—100 μM. (e) Secretory properties of ADRC exposed to patients CSF: Luminex multiplex cytokine analysis method. Dark grey bars: control, 48 h after incubation with CSF aspirated from responder (P3), mild responder (P6), and nonresponder (P4) before therapy.

References

    1. International League Against Epilepsy.
    1. Granata T., Cross H., Theodore W., Avanzini G. Immune-mediated epilepsies. Epilepsia. 2011;52(Supplement. 3):5–11. doi: 10.1111/j.1528-1167.2011.03029.x.
    1. Kapadia M., Sakic B. Autoimmune and inflammatory mechanisms of CNS damage. Progress in Neurobiology. 2011;95(3):301–333. doi: 10.1016/j.pneurobio.2011.08.008.
    1. Freeman J. M. Rasmussen’s syndrome: progressive autoimmune multi-focal encephalopathy. Pediatric Neurology. 2005;32(5):295–299. doi: 10.1016/j.pediatrneurol.2004.12.002.
    1. Benvenuto F., Ferrari S., Gerdoni E., et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells. 2007;25(7):1753–1760. doi: 10.1634/stemcells.2007-0068.
    1. Ramasamy R., Lam E. W., Soeiro I., Tisato V., Bonnet D., Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007;21(2):304–310. doi: 10.1038/sj.leu.2404489.
    1. Corcione A., Benvenuto F., Ferretti E., et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–372. doi: 10.1182/blood-2005-07-2657.
    1. Dabrowska S., Sypecka J., Jablonska A., et al. Neuroprotective potential and paracrine activity of stromal vs. culture-expanded hMSC derived from Wharton jelly under co-cultured with hippocampal organotypic slices. Molecular Neurobiology. 2018;55(7):6021–6036. doi: 10.1007/s12035-017-0802-1.
    1. Gimble J. M., Katz A. J., Bunnell B. A. Adipose-derived stem cells for regenerative medicine. Circulation Research. 2007;100(9):1249–1260. doi: 10.1161/01.RES.0000265074.83288.09.
    1. Fraser J. K., Zhu M., Wulur I., Alfosno Z. Adipose-derived stem cells. Methods in Molecular Biology. 2008;449:59–67. doi: 10.1007/978-1-60327-169-1_4.
    1. Tyndall A., Walker U. A., Cope A., et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Research & Therapy. 2007;9(1, article ar2103):p. 301. doi: 10.1186/ar2103.
    1. Tsuji W., Rubin J. P., Marra K. G. Adipose-derived stem cells: implications in tissue regeneration. World Journal of Stem Cells. 2014;6(3):312–321. doi: 10.4252/wjsc.v6.i3.312.
    1. Kanno H. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells. World Journal of Stem Cells. 2013;5(4):163–171. doi: 10.4252/wjsc.v5.i4.163.
    1. Voulgari-Kokota A., Fairless R., Karamita M., et al. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Experimental Neurology. 2012;236(1):161–170. doi: 10.1016/j.expneurol.2012.04.011.
    1. Costa-Ferro Z. S., de Borba C. F., de Freitas Souza B. S., et al. Antiepileptic and neuroprotective effects of human umbilical cord blood mononuclear cells in a pilocarpine-induced epilepsy model. Cytotechnology. 2014;66(2):193–199. doi: 10.1007/s10616-013-9557-3.
    1. Roper S. N., Steindler D. A. Stem cells as a potential therapy for epilepsy. Experimental Neurology. 2013;244:59–66. doi: 10.1016/j.expneurol.2012.01.004.
    1. Youn Y., Sung I. K., Lee I. G. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean Journal of Pediatrics. 2013;56(7):271–274. doi: 10.3345/kjp.2013.56.7.271.
    1. Gaspard N. Autoimmune epilepsy. CONTINUUM: Lifelong Learning in Neurology. 2016;22(1, Epilepsy):227–245. doi: 10.1212/CON.0000000000000272.
    1. Giugliano C., Benitez S., Wisnia P., Sorolla J. P., Acosta S., Andrades P. Liposuction and lipoinjection treatment for congenital and acquired lipodystrophies in children. Plastic and Reconstructive Surgery. 2009;124(1):134–143. doi: 10.1097/PRS.0b013e3181a80539.
    1. Hlebokazov F., Dakukina T., Ihnatsenko S., et al. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: an open label study. Advances in Medical Sciences. 2017;62(2):273–279. doi: 10.1016/j.advms.2016.12.004.
    1. Shwartz A., Betzer O., Kronfeld N., et al. Therapeutic effect of astroglia-like mesenchymal stem cells expressing glutamate transporter in a genetic rat model of depression. Theranostics. 2017;7(10):2690–2703. doi: 10.7150/thno.18914.
    1. Jozwiak S., Habich A., Kotulska K., et al. Intracerebroventricular transplantation of cord blood-derived neural progenitors in a child with severe global brain ischemic injury. Cell Medicine. 2010;1(2):71–80. doi: 10.3727/215517910X536618.
    1. Kuzma-Kozakiewicz M., Marchel A., Kaminska A., et al. Intraspinal Transplantation of the Adipose Tissue-Derived Regenerative Cells in Amyotrophic Lateral Sclerosis in Accordance with the Current Experts’ Recommendations: Choosing Optimal Monitoring Tools. Stem Cells International. 2018;2018:16. doi: 10.1155/2018/4392017.4392017
    1. Kwon M. S., Noh M. Y., Oh K. W., et al. The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients. Journal of Neurochemistry. 2014;131(2):206–218. doi: 10.1111/jnc.12814.
    1. Karussis D., Karageorgiou C., Vaknin-Dembinsky A., et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology. 2010;67(10):1187–1194. doi: 10.1001/archneurol.2010.248.
    1. Long Q., Qiu B., Wang K., et al. Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy. Brain Research. 2013;1532:1–13. doi: 10.1016/j.brainres.2013.07.020.
    1. Buzanska L., Jurga M., Domanska-Janik K. Neuronal differentiation of human umbilical cord blood neural stem-like cell line. Neurodegenerative Diseases. 2006;3(1-2):19–26. doi: 10.1159/000092088.
    1. Lech W., Figiel-Dabrowska A., Sarnowska A., et al. Phenotypic, functional, and safety control at preimplantation phase of MSC-based therapy. Stem Cells International. 2016;2016:13. doi: 10.1155/2016/2514917.2514917
    1. Woodbury D., Schwarz E. J., Prockop D. J., Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research. 2000;61(4):364–370. doi: 10.1002/1097-4547(20000815)61:4<364::AID-JNR2>;2-C.
    1. Choi J.-S., Kim H.-Y., Cha J.-H., Choi J.-Y., Lee M.-Y. Transient microglial and prolonged astroglial upregulation of osteopontin following transient forebrain ischemia in rats. Brain Research. 2007;1151:195–202. doi: 10.1016/j.brainres.2007.03.016.
    1. Kim S. Y., Choi Y. S., Choi J. S., et al. Osteopontin in kainic acid-induced microglial reactions in the rat brain. Molecules and Cells. 2002;13(3):429–435.
    1. Chabas D., Baranzini S. E., Mitchell D., et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science. 2001;294(5547):1731–1735. doi: 10.1126/science.1062960.
    1. Meller R., Stevens S. L., Minami M., et al. Neuroprotection by osteopontin in stroke. Journal of Cerebral Blood Flow & Metabolism. 2005;25(2):217–225. doi: 10.1038/sj.jcbfm.9600022.
    1. Lee S. H., Kim K. W., Min K. M., Kim K. W., Chang S. I., Kim J. C. Angiogenin reduces immune inflammation via inhibition of TANK-binding kinase 1 expression in human corneal fibroblast cells. Mediators of Inflammation. 2014;2014:12. doi: 10.1155/2014/861435.861435
    1. Kurreeman F. A., Schonkeren J. J., Heijmans B. T., Toes R. E., Huizinga T. W. Transcription of the IL10 gene reveals allele-specific regulation at the mRNA level. Human Molecular Genetics. 2004;13(16):1755–1762. doi: 10.1093/hmg/ddh187.
    1. Ishizaki Y., Kira R., Fukuda M., et al. Interleukin-10 is associated with resistance to febrile seizures: genetic association and experimental animal studies. Epilepsia. 2009;50(4):761–767. doi: 10.1111/j.1528-1167.2008.01861.x.
    1. Zhou Z., Peng X., Insolera R., Fink D. J., Mata M. Interleukin-10 provides direct trophic support to neurons. Journal of Neurochemistry. 2009;110(5):1617–1627. doi: 10.1111/j.1471-4159.2009.06263.x.
    1. Rana A., Musto A. E. The role of inflammation in the development of epilepsy. Journal of Neuroinflammation. 2018;15(1):p. 144. doi: 10.1186/s12974-018-1192-7.
    1. Xiao Q., Wang S.-k., Tian H., et al. TNF-α increases bone marrow mesenchymal stem cell migration to ischemic tissues. Cell Biochemistry and Biophysics. 2012;62(3):409–414. doi: 10.1007/s12013-011-9317-y.
    1. Bhattacharyya B. J., Banisadr G., Jung H., et al. The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. The Journal of Neuroscience. 2008;28(26):6720–6730. doi: 10.1523/JNEUROSCI.1677-08.2008.

Source: PubMed

3
Suscribir