Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors

Julie Soulard, Jacques Vaillant, Athan Baillet, Philippe Gaudin, Nicolas Vuillerme, Julie Soulard, Jacques Vaillant, Athan Baillet, Philippe Gaudin, Nicolas Vuillerme

Abstract

Background: Axial spondyloarthritis (axSpA) can lead to spinal mobility restrictions associated with restricted lower limb ranges of motion, thoracic kyphosis, spinopelvic ankylosis, or decrease in muscle strength. It is well known that these factors can have consequences on spatiotemporal gait parameters during walking. However, no study has assessed spatiotemporal gait parameters in patients with axSpA. Divergent results have been obtained in the studies assessing spatiotemporal gait parameters in ankylosing spondylitis, a subgroup of axSpA, which could be partly explained by self-reported pain intensity scores at time of assessment. Inertial measurement units (IMUs) are increasingly popular and may facilitate gait assessment in clinical practice.

Objective: This study compared spatiotemporal gait parameters assessed with foot-worn IMUs in patients with axSpA and matched healthy individuals without and with pain intensity score as a covariate.

Methods: A total of 30 patients with axSpA and 30 age- and sex-matched healthy controls performed a 10-m walk test at comfortable speed. Various spatiotemporal gait parameters were computed from foot-worn inertial sensors including gait speed in ms-1 (mean walking velocity), cadence in steps/minute (number of steps in a minute), stride length in m (distance between 2 consecutive footprints of the same foot on the ground), swing time in percentage (portion of the cycle during which the foot is in the air), stance time in percentage (portion of the cycle during which part of the foot touches the ground), and double support time in percentage (portion of the cycle where both feet touch the ground).

Results: Age, height, and weight were not significantly different between groups. Self-reported pain intensity was significantly higher in patients with axSpA than healthy controls (P<.001). Independent sample t tests indicated that patients with axSpA presented lower gait speed (P<.001) and cadence (P=.004), shorter stride length (P<.001) and swing time (P<.001), and longer double support time (P<.001) and stance time (P<.001) than healthy controls. When using pain intensity as a covariate, spatiotemporal gait parameters were still significant with patients with axSpA exhibiting lower gait speed (P<.001), shorter stride length (P=.001) and swing time (P<.001), and longer double support time (P<.001) and stance time (P<.001) than matched healthy controls. Interestingly, there were no longer statistically significant between-group differences observed for the cadence (P=.17).

Conclusions: Gait was significantly altered in patients with axSpA with reduced speed, cadence, stride length, and swing time and increased double support and stance time. Taken together, these changes in spatiotemporal gait parameters could be interpreted as the adoption of a so-called cautious gait pattern in patients with axSpA. Among factors that may influence gait in patients with axSpA, patient self-reported pain intensity could play a role. Finally, IMUs allowed computation of spatiotemporal gait parameters and are usable to assess gait in patients with axSpA in clinical routine.

Trial registration: ClinicalTrials.gov NCT03761212; https://ichgcp.net/clinical-trials-registry/NCT03761212.

International registered report identifier (irrid): RR2-10.1007/s00296-019-04396-4.

Keywords: ankylosing spondylitis; digital health; gait; locomotion; mobility; pain; sensors; spatiotemporal; spondyloarthritis.

Conflict of interest statement

Conflicts of Interest: None declared.

©Julie Soulard, Jacques Vaillant, Athan Baillet, Philippe Gaudin, Nicolas Vuillerme. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 09.11.2021.

Figures

Figure 1
Figure 1
Illustration of a healthy gait and a cautious gait pattern characterized by reduced gait speed and cadence, shortened stride length, and increased double support time.

References

    1. Proft F, Poddubnyy D. Ankylosing spondylitis and axial spondyloarthritis: recent insights and impact of new classification criteria. Ther Adv Musculoskelet Dis. 2018 Jun;10(5-6):129–139. doi: 10.1177/1759720X18773726. 10.1177_1759720X18773726
    1. Raychaudhuri SP, Deodhar A. The classification and diagnostic criteria of ankylosing spondylitis. J Autoimmun. 2014 Feb;48-49:128–133. doi: 10.1016/j.jaut.2014.01.015.S0896-8411(14)00018-3
    1. Rudwaleit M, van der Heijde D, Landewé R, Listing J, Akkoc N, Brandt J, Braun J, Chou CT, Collantes-Estevez E, Dougados M, Huang F, Gu J, Khan MA, Kirazli Y, Maksymowych WP, Mielants H, Sørensen IJ, Ozgocmen S, Roussou E, Valle-Oñate R, Weber U, Wei J, Sieper J. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis. 2009 Jun;68(6):777–783. doi: 10.1136/ard.2009.108233.ard.2009.108233
    1. Bohn R, Cooney M, Deodhar A, Curtis J, Golembesky A. Incidence and prevalence of axial spondyloarthritis: methodologic challenges and gaps in the literature. Clin Exp Rheumatol. 2018;36(2):263–274. 11841
    1. Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017 Jul 01;390(10089):73–84. doi: 10.1016/S0140-6736(16)31591-4.S0140-6736(16)31591-4
    1. Bot S, Caspers M, Van Royen B J, Toussaint H, Kingma I. Biomechanical analysis of posture in patients with spinal kyphosis due to ankylosing spondylitis: a pilot study. Rheumatology (Oxford) 1999 May;38(5):441–443. doi: 10.1093/rheumatology/38.5.441.
    1. Sato T, Yonezawa I, Inoue H, Tada K, Kobayashi S, Hayashi E, Tamura N, Kaneko K, Juntendo AS Research Group Relationship between characteristics of spinopelvic alignment and quality of life in Japanese patients with ankylosing spondylitis: a cross-sectional study. BMC Musculoskelet Disord. 2020 Jan 18;21(1):41. doi: 10.1186/s12891-020-3040-z. 10.1186/s12891-020-3040-z
    1. Sahin N, Ozcan E, Baskent A, Karan A, Kasikcioglu E. Muscular kinetics and fatigue evaluation of knee using by isokinetic dynamometer in patients with ankylosing spondylitis. Acta Reumatol Port. 2011;36(3):252–259.
    1. Ro D, Lee J, Lee J, Park J, Han H, Lee M. Effects of knee osteoarthritis on hip and ankle gait mechanics. Adv Orthop. 2019;2019:9757369. doi: 10.1155/2019/9757369. doi: 10.1155/2019/9757369.
    1. Suh MJ, Kim BR, Kim SR, Han EY, Nam KW, Lee SY, Park YG, Kim WB. Bilateral quadriceps muscle strength and pain correlate with gait speed and gait endurance early after unilateral total knee arthroplasty: a cross-sectional study. Am J Phys Med Rehabil. 2019 Oct;98(10):897–905. doi: 10.1097/PHM.0000000000001222.
    1. Tanishima S, Hagino H, Matsumoto H, Tanimura C, Nagashima H. Association between sarcopenia and low back pain in local residents prospective cohort study from the GAINA study. BMC Musculoskelet Disord. 2017 Nov 15;18(1):452. doi: 10.1186/s12891-017-1807-7. 10.1186/s12891-017-1807-7
    1. Otayek J, Bizdikian AJ, Yared F, Saad E, Bakouny Z, Massaad A, Ghanimeh J, Labaki C, Skalli W, Ghanem I, Kreichati G, Assi A. Influence of spino-pelvic and postural alignment parameters on gait kinematics. Gait Posture. 2020 Feb;76:318–326. doi: 10.1016/j.gaitpost.2019.12.029.S0966-6362(19)31799-0
    1. Soulard J, Vaillant J, Vuillerme N. Gait in patients with axial spondyloarthritis: a systematic review of the literature. Curr Rheumatol Rev. 2021 Sep 20;:1. doi: 10.2174/1573397117666210921114949.CRR-EPUB-118087
    1. Soulard J, Vaillant J, Agier C, Vuillerme N. Gait characteristics in patients with ankylosing spondylitis: a systematic review. Clin Exp Rheumatol. 2021;39(1):173–186. 15409
    1. Del DS, Carraro E, Sawacha Z, Guiotto A, Bonaldo L, Masiero S, Cobelli C. Impaired gait in ankylosing spondylitis. Med Biol Eng Comput. 2011 Jul;49(7):801–809. doi: 10.1007/s11517-010-0731-x.
    1. Zebouni L, Helliwell PS, Howe A, Wright V. Gait analysis in ankylosing spondylitis. Ann Rheum Dis. 1992 Jul 01;51(7):898–899. doi: 10.1136/ard.51.7.898.
    1. Mangone M, Scettri P, Paoloni M, Procaccianti R, Spadaro A, Santilli V. Pelvis-shoulder coordination during level walking in patients with ankylosing spondylitis. Gait Posture. 2011 May;34(1):1–5. doi: 10.1016/j.gaitpost.2011.02.002.S0966-6362(11)00036-1
    1. Zhang G, Li J, Xia Z, Xu W. The gait deviations of ankylosing spondylitis with hip involvement. Clin Rheumatol. 2019 Apr 4;38(4):1163–1175. doi: 10.1007/s10067-018-4401-y.10.1007/s10067-018-4401-y
    1. Demirel A, Onan D, Oz M, Ozel Aslıyuce Y, Ulger O. Moderate disability has negative effect on spatiotemporal parameters in patients with chronic low back pain. Gait Posture. 2020 Jun;79:251–255. doi: 10.1016/j.gaitpost.2020.05.015.S0966-6362(20)30166-1
    1. Bonab M, Colak TK, Toktas ZO, Konya D. Assessment of spatiotemporal gait parameters in patients with lumbar disc herniation and patients with chronic mechanical low back pain. Turk Neurosurg. 2020;30(2):277–284. doi: 10.5137/1019-5149.JTN.27499-19.2.
    1. Hicks GE, Sions JM, Coyle PC, Pohlig RT. Altered spatiotemporal characteristics of gait in older adults with chronic low back pain. Gait Posture. 2017 Jun;55:172–176. doi: 10.1016/j.gaitpost.2017.04.027. S0966-6362(17)30158-3
    1. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005 Aug;14(7):798–804. doi: 10.1111/j.1365-2702.2005.01121.x. JCN1121
    1. Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis. Expert Rev Med Devices. 2016 Jul;13(7):641–659. doi: 10.1080/17434440.2016.1198694.
    1. Chen S, Lach J, Lo B, Yang G. Toward pervasive gait analysis with wearable sensors: a systematic review. IEEE J Biomed Health Inform. 2016 Nov;20(6):1521–1537. doi: 10.1109/JBHI.2016.2608720.
    1. Aranda-Valera I, Cuesta-Vargas A, Garrido-Castro J, Gardiner P, López-Medina C, Machado P, Condell J, Connolly J, Williams J, Muñoz-Esquivel K, O'Dwyer T, Castro-Villegas M, González-Navas C, Collantes-Estévez E. Measuring spinal mobility using an inertial measurement unit system: a validation study in axial spondyloarthritis. Diagnostics (Basel) 2020 Jun 24;10(6):426. doi: 10.3390/diagnostics10060426. diagnostics10060426
    1. Coulter EH, McDonald MT, Cameron S, Siebert S, Paul L. Physical activity and sedentary behaviour and their associations with clinical measures in axial spondyloarthritis. Rheumatol Int. 2020 Mar;40(3):375–381. doi: 10.1007/s00296-019-04494-3. 10.1007/s00296-019-04494-3
    1. Lwanga S, Lemeshow S. Sample size determination in health studies : a practical manual. Geneva: World Health Organization; 1991. [2021-09-18]. .
    1. Sample size calculator. [2021-09-18]. .
    1. Soulard J, Vuillerme N, Gaudin P, Grange L, Baillet A, Cracowski J, Juvin R, Vaillant J. Gait as predictor of physical function in axial spondyloarthritis: the prospective longitudinal FOLOMI (Function, Locomotion, Measurement, Inflammation) study protocol. Rheumatol Int. 2019 Oct;39(10):1681–1688. doi: 10.1007/s00296-019-04396-4.10.1007/s00296-019-04396-4
    1. van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984 Apr;27(4):361–368. doi: 10.1002/art.1780270401.
    1. Escalante A, Lichtenstein MJ, White K, Rios N, Hazuda HP. A method for scoring the pain map of the McGill Pain Questionnaire for use in epidemiologic studies. Aging (Milano) 1995 Oct;7(5):358–366. doi: 10.1007/BF03324346.
    1. Calin A, Garrett S, Whitelock H, Kennedy L, O'Hea J, Mallorie P, Jenkinson T. A new approach to defining functional ability in ankylosing spondylitis: the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol. 1994 Dec;21(12):2281–2285.
    1. El Miedany Y, Youssef S, Mehanna A, Shebrya N, Abu Gamra S, El Gaafary M. Defining disease status in ankylosing spondylitis: validation and cross-cultural adaptation of the Arabic Bath Ankylosing Spondylitis Functional Index (BASFI), the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), and the Bath Ankylosing Spondylitis Global score (BASG) Clin Rheumatol. 2008 May 5;27(5):605–612. doi: 10.1007/s10067-007-0755-2.
    1. Graham JE, Ostir GV, Fisher SR, Ottenbacher KJ. Assessing walking speed in clinical research: a systematic review. J Eval Clin Pract. 2008 Aug;14(4):552–562. doi: 10.1111/j.1365-2753.2007.00917.x. JEP917
    1. Soulard J, Vaillant J, Balaguier R, Baillet A, Gaudin P, Vuillerme N. Foot-worn inertial sensors are reliable to assess spatiotemporal gait parameters in axial spondyloarthritis under single and dual task walking in axial spondyloarthritis. Sensors (Basel) 2020 Nov 12;20(22):6453. doi: 10.3390/s20226453. s20226453
    1. Truong P, Lee J, Kwon A, Jeong G. Stride counting in human walking and walking distance estimation using insole sensors. Sensors (Basel) 2016 Jun 04;16(6):823. doi: 10.3390/s16060823. s16060823
    1. Anwary A, Yu H, Vassallo M. An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors (Basel) 2018 Feb 24;18(2):676. doi: 10.3390/s18020676. s18020676
    1. Song Y, Wang C, Chen H. Functional limitation and associated factors in outpatients with ankylosing spondylitis in Southwest China. Clin Rheumatol. 2017 Apr;36(4):871–877. doi: 10.1007/s10067-017-3563-3.10.1007/s10067-017-3563-3
    1. Eppeland S, Diamantopoulos AP, Soldal D, Haugeberg G. Short term in-patient rehabilitation in axial spondyloarthritis: the results of a 2-week program performed in daily clinical practice. BMC Res Notes. 2013 May 07;6(1):185. doi: 10.1186/1756-0500-6-185. 1756-0500-6-185
    1. Kavanagh JJ, Menz HB. Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture. 2008 Jul;28(1):1–15. doi: 10.1016/j.gaitpost.2007.10.010.S0966-6362(07)00270-6
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd Edition, reprint. New York: Psychology Press; 2009.
    1. Cheng DK, Nelson M, Brooks D, Salbach NM. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top Stroke Rehabil. 2020 May;27(4):251–261. doi: 10.1080/10749357.2019.1691815.
    1. Chan WL, Pin TW. Reliability, validity and minimal detectable change of 2-minute walk test, 6-minute walk test and 10-meter walk test in frail older adults with dementia. Exp Gerontol. 2019 Jan;115:9–18. doi: 10.1016/j.exger.2018.11.001.S0531-5565(18)30436-4
    1. Nascimento LR, Caetano LCG, Freitas DCMA, Morais TM, Polese JC, Teixeira-Salmela LF. Different instructions during the ten-meter walking test determined significant increases in maximum gait speed in individuals with chronic hemiparesis. Rev Bras Fisioter. 2012 Apr;16(2):122–127. doi: 10.1590/s1413-35552012005000008.S1413-35552012005000008
    1. Graser JV, Letsch C, van Hedel HJA. Reliability of timed walking tests and temporo-spatial gait parameters in youths with neurological gait disorders. BMC Neurol. 2016 Jan 31;16(1):15. doi: 10.1186/s12883-016-0538-y. 10.1186/s12883-016-0538-y
    1. Sorsdahl AB, Moe-Nilssen R, Strand LI. Test-retest reliability of spatial and temporal gait parameters in children with cerebral palsy as measured by an electronic walkway. Gait Posture. 2008 Jan;27(1):43–50. doi: 10.1016/j.gaitpost.2007.01.001.S0966-6362(07)00015-X
    1. Pérez-Sanpablo AI, Quinzaños-Fresnedo J, Loera-Cruz R, Quiñones-Uriostegui I, Rodriguez-Reyes G, Pérez-Zavala R. Validation of the instrumented evaluation of spatio-temporal gait parameters in patients with motor incomplete spinal cord injury. Spinal Cord. 2017 Feb 28;55(7):699–704. doi: 10.1038/sc.2017.4.
    1. Mariani B, Rouhani H, Crevoisier X, Aminian K. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait Posture. 2013 Feb;37(2):229–234. doi: 10.1016/j.gaitpost.2012.07.012.S0966-6362(12)00282-2
    1. Jayakaran P, DeSouza L, Cossar J, Gilhooly K. Influence of a walking aid on temporal and spatial parameters of gait in healthy adults. PM R. 2014 Sep;6(9):796–801. doi: 10.1016/j.pmrj.2014.02.005.S1934-1482(14)00073-2
    1. Lopes PG, Lopes JAF, Brito CM, Alfieri FM, Rizzo Battistella L. Relationships of balance, gait performance, and functional outcome in chronic stroke patients: a comparison of left and right lesions. Biomed Res Int. 2015;2015:716042–716048. doi: 10.1155/2015/716042. doi: 10.1155/2015/716042.
    1. Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil. 2007 Jan;88(1):43–49. doi: 10.1016/j.apmr.2006.10.004.S0003-9993(06)01372-4
    1. Wang Y, Mukaino M, Ohtsuka K, Otaka Y, Tanikawa H, Matsuda F, Tsuchiyama K, Yamada J, Saitoh E. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int J Rehabil Res. 2020 Mar;43(1):69–75. doi: 10.1097/MRR.0000000000000391. 00004356-202003000-00011
    1. Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V, Saeys W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018 Jul;64:181–190. doi: 10.1016/j.gaitpost.2018.06.012.S0966-6362(18)30709-4
    1. Pirker W, Katzenschlager R. Gait disorders in adults and the elderly: a clinical guide. Wien Klin Wochenschr. 2017 Feb;129(3-4):81–95. doi: 10.1007/s00508-016-1096-4. 10.1007/s00508-016-1096-4
    1. Lim J, Kim J, Seo K, van Emmerik REA, Lee S. The effects of mobile texting and walking speed on gait characteristics of normal weight and obese adults. Motor Control. 2020 Sep 10;:1–17. doi: 10.1123/mc.2020-0006.mc.2020-0006
    1. Maktouf W, Durand S, Boyas S, Pouliquen C, Beaune B. Interactions among obesity and age-related effects on the gait pattern and muscle activity across the ankle joint. Exp Gerontol. 2020 Oct 15;140:111054. doi: 10.1016/j.exger.2020.111054.S0531-5565(20)30402-2
    1. McGraw B, McClenaghan BA, Williams HG, Dickerson J, Ward DS. Gait and postural stability in obese and nonobese prepubertal boys. Arch Phys Med Rehabil. 2000 Apr;81(4):484–489. doi: 10.1053/mr.2000.3782.S0003-9993(00)63612-2
    1. Cromwell RL, Newton RA. Relationship between balance and gait stability in healthy older adults. J Aging Phys Act. 2004 Jan;12(1):90–100. doi: 10.1123/japa.12.1.90.
    1. Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017 Jun;55:87–93. doi: 10.1016/j.gaitpost.2017.04.013. S0966-6362(17)30126-1
    1. Lu W, Wang C, Lin J, Sheu C, Hsieh C. The minimal detectable change of the simplified stroke rehabilitation assessment of movement measure. J Rehabil Med. 2008 Aug;40(8):615–619. doi: 10.2340/16501977-0230.
    1. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel) 2014 Feb 19;14(2):3362–3394. doi: 10.3390/s140203362. s140203362
    1. Amatachaya S, Kwanmongkolthong M, Thongjumroon A, Boonpew N, Amatachaya P, Saensook W, Thaweewannakij T, Hunsawong T. Influence of timing protocols and distance covered on the outcomes of the 10-meter walk test. Physiother Theory Pract. 2020 Dec;36(12):1348–1353. doi: 10.1080/09593985.2019.1570577.
    1. Lindholm B, Nilsson MH, Hansson O, Hagell P. The clinical significance of 10-m walk test standardizations in Parkinson's disease. J Neurol. 2018 Aug;265(8):1829–1835. doi: 10.1007/s00415-018-8921-9. 10.1007/s00415-018-8921-9
    1. Baker R, Esquenazi A, Benedetti MG, Desloovere K. Gait analysis: clinical facts. Eur J Phys Rehabil Med. 2016 Aug;52(4):560–574. R33Y2016N04A0560
    1. Lee S, Walker RM, Kim Y, Lee H. Measurement of human walking movements by using a mobile health app: motion sensor data analysis. JMIR Mhealth Uhealth. 2021 Mar 05;9(3):e24194. doi: 10.2196/24194. v9i3e24194
    1. Pratap A, Grant D, Vegesna A, Tummalacherla M, Cohan S, Deshpande C, Mangravite L, Omberg L. Evaluating the utility of smartphone-based sensor assessments in persons with multiple sclerosis in the real-world using an app (elevateMS): observational, prospective pilot digital health study. JMIR Mhealth Uhealth. 2020 Oct 27;8(10):e22108. doi: 10.2196/22108. v8i10e22108
    1. Muntaner-Mas A, Martinez-Nicolas A, Quesada A, Cadenas-Sanchez C, Ortega FB. Smartphone app (2kmFIT-App) for measuring cardiorespiratory fitness: validity and reliability study. JMIR Mhealth Uhealth. 2021 Jan 08;9(1):e14864. doi: 10.2196/14864. v9i1e14864
    1. Madsen OR. Stability of fatigue, pain, patient global assessment and the Bath Ankylosing Spondylitis Functional Index (BASFI) in spondyloarthropathy patients with stable disease according to the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) Rheumatol Int. 2018 Mar 3;38(3):425–432. doi: 10.1007/s00296-017-3920-1.10.1007/s00296-017-3920-1
    1. Kaciroti N, DosSantos MF, Moura B, Bellile EL, Nascimento TD, Maslowski E, Danciu TE, Donnell A, DaSilva AF. Sensory-discriminative three-dimensional body pain mobile app measures versus traditional pain measurement with a visual analog scale: validation study. JMIR Mhealth Uhealth. 2020 Aug 19;8(8):e17754. doi: 10.2196/17754. v8i8e17754
    1. Pathak A, Sharma S, Jensen MP. The utility and validity of pain intensity rating scales for use in developing countries. Pain Rep. 2018;3(5):e672. doi: 10.1097/PR9.0000000000000672. PAINREPORTS-D-18-0028
    1. Duruöz MT, Acer Kasman S, Şahin N, Sezer. Bodur H, Ketenci A, Hizmetli S, Erdem Gürsoy D, Demir AN, Menekşeoğlu AK, Karadağ A, Baklacıoğlu Validity, reliability, and factor structure of the Istanbul Low Back Pain Disability Index in axial spondyloarthritis. Mod Rheumatol. 2020 Mar 03;:1–7. doi: 10.1080/14397595.2020.1733172.

Source: PubMed

3
Suscribir