Foot-Worn Inertial Sensors Are Reliable to Assess Spatiotemporal Gait Parameters in Axial Spondyloarthritis under Single and Dual Task Walking in Axial Spondyloarthritis

Julie Soulard, Jacques Vaillant, Romain Balaguier, Athan Baillet, Philippe Gaudin, Nicolas Vuillerme, Julie Soulard, Jacques Vaillant, Romain Balaguier, Athan Baillet, Philippe Gaudin, Nicolas Vuillerme

Abstract

The aim of this study was (1) to evaluate the relative and absolute reliability of gait parameters during walking in single- and dual-task conditions in patients with axial spondyloarthritis (axSpA), (2) to evaluate the absolute and relative reliability of dual task effects (DTE) parameters, and (3) to determine the number of trials required to ensure reliable gait assessment, in patients with axSpA. Twenty patients with axSpa performed a 10-m walk test in single- and dual-task conditions, three times for each condition. Spatiotemporal, symmetry, and DTE gait parameters were calculated from foot-worn inertial sensors. The relative reliability (intraclass correlation coefficients-ICC) and absolute reliability (standard error of measurement-SEM and minimum detectable change-MDC) were calculated for these parameters in each condition. Spatiotemporal gait parameters showed good to excellent reliability in both conditions (0.59 < ICC < 0.90). The reliability of symmetry and DTE parameters was low. ICC, SEM, and MDC were better when using the mean of the second and the third trials. Spatiotemporal gait parameters obtained from foot-worn inertial sensors assessed in patients with axSpA in single- and dual-task conditions are reliable. However, symmetry and DTE parameters seem less reliable and need to be interpreted with caution. Finally, better reliability of gait parameters was found when using the mean of the 2nd and the 3rd trials.

Keywords: 10-m walk test; ankylosing spondylitis; dual-task; manual task; reliability; spondylarthritis; walking; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest. No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this work. None of the authors have any links to companies or manufacturers who would benefit from this work. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

    1. Bouisset S., Maton B. Muscles, Posture et Mouvement: Bases et Applications de la Méthode Electromyographique. Hermann; Paris, France: 1996.
    1. Warren M., Ganley K.J., Pohl P.S. The association between social participation and lower extremity muscle strength, balance, and gait speed in US adults. Prev. Med. Rep. 2016;4:142–147. doi: 10.1016/j.pmedr.2016.06.005.
    1. Byun S., Han J.W., Kim T.H., Kim K.W. Test-Retest Reliability and Concurrent Validity of a Single Tri-Axial Accelerometer-Based Gait Analysis in Older Adults with Normal Cognition. PLoS ONE. 2016;11:e0158956. doi: 10.1371/journal.pone.0158956.
    1. Marques N.R., Spinoso D.H., Cardoso B.C., Moreno V.C., Kuroda M.H., Navega M.T. Is it possible to predict falls in older adults using gait kinematics? Clin. Biomech. 2018;59:15–18. doi: 10.1016/j.clinbiomech.2018.08.006.
    1. Beauchet O., Launay C.P., Sekhon H., Barthelemy J.-C., Roche F., Chabot J., Levinoff E.J., Allali G. Association of increased gait variability while dual tasking and cognitive decline: Results from a prospective longitudinal cohort pilot study. GeroScience. 2017;39:439–445. doi: 10.1007/s11357-017-9992-8.
    1. Veronese N., Stubbs B., Volpato S., Zuliani G., Maggi S., Cesari M., Lipnicki D.M., Smith L., Schofield P., Firth J., et al. Association between gait speed with mortality, cardiovascular disease and cancer: A systematic review and meta-analysis of prospective cohort studies. J. Am. Med. Dir. Assoc. 2018;19:981–988.e7. doi: 10.1016/j.jamda.2018.06.007.
    1. Iosa M., Picerno P., Paolucci S., Morone G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices. 2016;13:641–659. doi: 10.1080/17434440.2016.1198694.
    1. Mirelman A., Shema S., Maidan I., Hausdorff J.M. Gait. Handb. Clin. Neurol. 2018;159:119–134. doi: 10.1016/B978-0-444-63916-5.00007-0.
    1. McIsaac T.L., Lamberg E.M., Muratori L.M. Building a Framework for a Dual Task Taxonomy. [(accessed on 14 January 2020)]; Available online:
    1. Hillel I., Gazit E., Nieuwboer A., Avanzino L., Rochester L., Cereatti A., Croce U.D., Rikkert M.O., Bloem B.R., Pelosin E., et al. Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. Eur. Rev. Aging Phys. Act. 2019;16:6. doi: 10.1186/s11556-019-0214-5.
    1. Raffegeau T.E., Krehbiel L.M., Kang N., Thijs F.J., Altmann L.J.P., Cauraugh J.H., Hass C.J. A meta-analysis: Parkinson’s disease and dual-task walking. Parkinsonism Relat. Disord. 2019;62:28–35. doi: 10.1016/j.parkreldis.2018.12.012.
    1. Rooney S., Ozkul C., Paul L. Correlates of dual-task performance in people with multiple sclerosis: A systematic review. Gait Posture. 2020;81:172–182. doi: 10.1016/j.gaitpost.2020.07.069.
    1. Yang L., Lam F.M., Huang M., He C., Pang M.Y. Dual-task mobility among individuals with chronic stroke: Changes in cognitive-motor interference patterns and relationship to difficulty level of mobility and cognitive tasks. Eur. J. Phys. Rehabil. Med. 2018;54:526–535. doi: 10.23736/S1973-9087.17.04773-6.
    1. Abdallat R., Sharouf F., Button K., Al-Amri M. Dual-Task Effects on Performance of Gait and Balance in People with Knee Pain: A Systematic Scoping Review. J. Clin. Med. 2020;9:1554. doi: 10.3390/jcm9051554.
    1. UzunkulaoĞlu A., Kerİm D., Ay S., Ergİn S. Effects of single-task versus dual-task training on balance performance in elderly patients with knee osteoarthritis. Arch. Rheumatol. 2020;35:35–40. doi: 10.5606/ArchRheumatol.2020.7174.
    1. Bishnoi A., Hernandez M.E. Dual task walking costs in older adults with mild cognitive impairment: A systematic review and meta-analysis. Aging Ment. Health. 2020:1–12. doi: 10.1080/13607863.2020.1802576.
    1. Montero-Odasso M., Muir S.W., Speechley M. Dual-task complexity affects gait in people with mild cognitive impairment: The interplay between gait variability, dual tasking, and risk of falls. Arch. Phys. Med. Rehabil. 2012;93:293–299. doi: 10.1016/j.apmr.2011.08.026.
    1. Springer S., Giladi N., Peretz C., Yogev G., Simon E.S., Hausdorff J.M. Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Mov. Disord. Off. J. Mov. Disord. Soc. 2006;21:950–957. doi: 10.1002/mds.20848.
    1. Bayot M., Dujardin K., Tard C., Defebvre L., Bonnet C.T., Allart E., Delval A. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol. Clin. Clin. Neurophysiol. 2018;48:361–375. doi: 10.1016/j.neucli.2018.10.003.
    1. Kluge F., Gaßner H., Hannink J., Pasluosta C., Klucken J., Eskofier B.M. Towards mobile gait analysis: Concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors. 2017;17:1522. doi: 10.3390/s17071522.
    1. Lachin J.M. The role of measurement reliability in clinical trials. Clin. Trials. 2004;1:553–566. doi: 10.1191/1740774504cn057oa.
    1. Wedege P., Steffen K., Strøm V., Opheim A.I. Reliability of three-dimensional kinematic gait data in adults with spinal cord injury. J. Rehabil. Assist. Technol. Eng. 2017;4 doi: 10.1177/2055668317729992.
    1. Leszczewska J., Czaprowski D., Pawłowska P., Białobrzewska K., Gębicka A., Kotwicki T. Inter-examiner, intra-session and inter-session reliability of gait measurement. Stud. Health Technol. Inform. 2012;176:155–158.
    1. Girard O., Brocherie F., Morin J.-B., Millet G.P. Intrasession and intersession reliability of running mechanics during treadmill sprints. Int. J. Sports Physiol. Perform. 2016;11:432–439. doi: 10.1123/ijspp.2015-0145.
    1. Balaguier R., Madeleine P., Vuillerme N. Is one trial sufficient to obtain excellent pressure pain threshold reliability in the low back of asymptomatic individuals? a test-retest study. PLoS ONE. 2016;11:e0160866. doi: 10.1371/journal.pone.0160866.
    1. Monaghan K., Delahunt E., Caulfield B. Increasing the number of gait trial recordings maximises intra-rater reliability of the CODA motion analysis system. Gait Posture. 2007;25:303–315. doi: 10.1016/j.gaitpost.2006.04.011.
    1. Bloch M.L., Jønsson L.R., Kristensen M.T. Introducing a third timed up & go test trial improves performances of hospitalized and community-dwelling older individuals. J. Geriatr. Phys. Ther. 2001. 2017;40:121–126. doi: 10.1519/JPT.0000000000000080.
    1. Fransen M., Crosbie J., Edmonds J. Reliability of gait measurements in people with osteoarthritis of the knee. Phys. Ther. 1997;77:944–953. doi: 10.1093/ptj/77.9.944.
    1. Haley S.M., Fragala-Pinkham M.A. Interpreting change scores of tests and measures used in physical therapy. Phys. Ther. 2006;86:735–743. doi: 10.1093/ptj/86.5.735.
    1. Bohn R., Cooney M., Deodhar A., Curtis J.R., Golembesky A. Incidence and prevalence of axial spondyloarthritis: Methodologic challenges and gaps in the literature. Clin. Exp. Rheumatol. 2018;36:263–274.
    1. Batur E.B., Karataş G.K. Do postural changes affect balance in patients with ankylosing spondylitis? J. Rehabil. Med. 2017;49:437–440. doi: 10.2340/16501977-2230.
    1. Vergara M.E., O’Shea F.D., Inman R.D., Gage W.H. Postural control is altered in patients with ankylosing spondylitis. Clin. Biomech. 2012;27:334–340. doi: 10.1016/j.clinbiomech.2011.10.016.
    1. Aydog E., Depedibi R., Bal A., Eksioglu E., Unlü E., Cakci A. Dynamic postural balance in ankylosing spondylitis patients. Rheumatology. 2006;45:445–448. doi: 10.1093/rheumatology/kei192.
    1. Bot S.D., Caspers M., Van Royen B.J., Toussaint H.M., Kingma I. Biomechanical analysis of posture in patients with spinal kyphosis due to ankylosing spondylitis: A pilot study. Rheumatology. 1999;38:441–443. doi: 10.1093/rheumatology/38.5.441.
    1. Koca T.T., Göğebakan H., Koçyiğit B.F., Nacitarhan V., Yildir C.Z. Foot functions in ankylosing spondylitis. Clin. Rheumatol. 2018 doi: 10.1007/s10067-018-4386-6.
    1. Soulard J., Vuillerme N., Vaillant J. Gait characteristics in patients with ankylosing spondylitis: Protocol for a systematic review. JMIR Res. Protoc. 2019;8:e12470. doi: 10.2196/12470.
    1. Zebouni L., Helliwell P.S., Howe A., Wright V. Gait analysis in ankylosing spondylitis. Ann. Rheum. Dis. 1992;51:898–899. doi: 10.1136/ard.51.7.898.
    1. Mangone M., Scettri P., Paoloni M., Procaccianti R., Spadaro A., Santilli V. Pelvis-shoulder coordination during level walking in patients with ankylosing spondylitis. Gait Posture. 2011;34:1–5. doi: 10.1016/j.gaitpost.2011.02.002.
    1. Del Din S., Carraro E., Sawacha Z., Guiotto A., Bonaldo L., Masiero S., Cobelli C. Impaired gait in ankylosing spondylitis. Med. Biol. Eng. Comput. 2011;49:801–809. doi: 10.1007/s11517-010-0731-x.
    1. Zhang G., Li J., Xia Z., Xu W. The gait deviations of ankylosing spondylitis with hip involvement. Clin. Rheumatol. 2019;38:1163–1175. doi: 10.1007/s10067-018-4401-y.
    1. Soulard J., Vaillant J., Agier C.-T., Vuillerme N. Gait Characteristics in patients with ankylosing spondylitis—A systematic review. J. Clin. Exp. Rheumatol. 2020 doi: 10.2196/12470. in Press.
    1. Soulard J., Vuillerme N., Gaudin P., Grange L., Baillet A., Cracowski J.-L., Juvin R., Vaillant J. Gait as predictor of physical function in axial spondyloarthritis: The prospective longitudinal FOLOMI (Function, Locomotion, Measurement, Inflammation) study protocol. Rheumatol. Int. 2019 doi: 10.1007/s00296-019-04396-4.
    1. Sieper J., Rudwaleit M., Baraliakos X., Brandt J., Braun J., Burgos-Vargas R., Dougados M., Hermann K.-G., Landewé R., Maksymowych W., et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: A guide to assess spondyloarthritis. Ann. Rheum. Dis. 2009;68(Suppl. 2):ii1–ii44. doi: 10.1136/ard.2008.104018.
    1. van der Linden S., Valkenburg H.A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361–368. doi: 10.1002/art.1780270401.
    1. Kottner J., Audigé L., Brorson S., Donner A., Gajewski B.J., Hróbjartsson A., Roberts C., Shoukri M., Streiner D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J. Clin. Epidemiol. 2011;64:96–106. doi: 10.1016/j.jclinepi.2010.03.002.
    1. > Sample Size Calculator. [(accessed on 6 August 2020)]; Available online: .
    1. Walter S.D., Eliasziw M., Donner A. Sample size and optimal designs for reliability studies. Stat. Med. 1998;17:101–110. doi: 10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>;2-E.
    1. Song Y., Wang C., Chen H. Functional limitation and associated factors in outpatients with ankylosing spondylitis in Southwest China. Clin. Rheumatol. 2017;36:871–877. doi: 10.1007/s10067-017-3563-3.
    1. Graham J.E., Ostir G.V., Fisher S.R., Ottenbacher K.J. Assessing walking speed in clinical research: A systematic review. J. Eval. Clin. Pract. 2008;14:552–562. doi: 10.1111/j.1365-2753.2007.00917.x.
    1. Beauchet O., Allali G., Sekhon H., Verghese J., Guilain S., Steinmetz J.-P., Kressig R.W., Barden J.M., Szturm T., Launay C.P., et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: The biomathics and canadian gait consortiums Initiative. Front. Hum. Neurosci. 2017;11:353. doi: 10.3389/fnhum.2017.00353.
    1. Yang L., He C., Pang M.Y.C. Reliability and validity of dual-task mobility assessments in people with chronic stroke. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0147833.
    1. Lefeber N., Degelaen M., Truyers C., Safin I., Beckwee D. Validity and reproducibility of inertial physilog sensors for spatiotemporal gait analysis in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2019;27:1865–1874. doi: 10.1109/TNSRE.2019.2930751.
    1. Dadashi F., Mariani B., Rochat S., Büla C.J., Santos-Eggimann B., Aminian K. Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors. 2014;14:443–457. doi: 10.3390/s140100443.
    1. Truong P.H., Lee J., Kwon A.-R., Jeong G.-M. Stride counting in human walking and walking distance estimation using insole sensors. Sensors. 2016;16:823. doi: 10.3390/s16060823.
    1. Anwary A.R., Yu H., Vassallo M. An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors. 2018;18:676. doi: 10.3390/s18020676.
    1. Hollman J.H., Childs K.B., McNeil M.L., Mueller A.C., Quilter C.M., Youdas J.W. Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture. 2010;32:23–28. doi: 10.1016/j.gaitpost.2010.02.017.
    1. Pinzone O., Schwartz M.H., Baker R. Comprehensive non-dimensional normalization of gait data. Gait Posture. 2016;44:68–73. doi: 10.1016/j.gaitpost.2015.11.013.
    1. Hof A. Scaling gait data to body size. Gait Posture. 1996;4:222–223. doi: 10.1016/0966-6362(95)01057-2.
    1. Błażkiewicz M., Wiszomirska I., Wit A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 2014;16:29–35.
    1. Patterson K.K., Gage W.H., Brooks D., Black S.E., McIlroy W.E. Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization. Gait Posture. 2010;31:241–246. doi: 10.1016/j.gaitpost.2009.10.014.
    1. Kelly V.E., Janke A.A., Shumway-Cook A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp. Brain Res. Exp. Hirnforsch Exp. Cereb. 2010;207:65–73. doi: 10.1007/s00221-010-2429-6.
    1. Veldkamp R., Romberg A., Hämäläinen P., Giffroy X., Moumdjian L., Leone C., Feys P., Baert I. Test-retest reliability of cognitive-motor interference assessments in walking with various task complexities in persons with multiple sclerosis. Neurorehabil. Neural Repair. 2019;33:623–634. doi: 10.1177/1545968319856897.
    1. Landis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Harvill L.M. Standard error of measurement. Educ. Meas. Issues Pract. 1991;10:33–41. doi: 10.1111/j.1745-3992.1991.tb00195.x.
    1. Walton D.M., Macdermid J.C., Nielson W., Teasell R.W., Chiasson M., Brown L. Reliability, standard error, and minimum detectable change of clinical pressure pain threshold testing in people with and without acute neck pain. J. Orthop. Sports Phys. Ther. 2011;41:644–650. doi: 10.2519/jospt.2011.3666.
    1. Venema D.M., Hansen H., High R., Goetsch T., Siu K.-C. Minimal detectable change in dual-task cost for older adults with and without cognitive impairment. J. Geriatr. Phys. Ther. 2001. 2018 doi: 10.1519/JPT.0000000000000194.
    1. Yang L., Liao L.R., Lam F.M.H., He C.Q., Pang M.Y.C. Psychometric properties of dual-task balance assessments for older adults: A systematic review. Maturitas. 2015;80:359–369. doi: 10.1016/j.maturitas.2015.01.001.
    1. Yang L., Lam F.M.H., Liao L.R., Huang M.Z., He C.Q., Pang M.Y.C. Psychometric properties of dual-task balance and walking assessments for individuals with neurological conditions: A systematic review. Gait Posture. 2017;52:110–123. doi: 10.1016/j.gaitpost.2016.11.007.
    1. Kobsar D., Charlton J.M., Tse C.T.F., Esculier J.-F., Graffos A., Krowchuk N.M., Thatcher D., Hunt M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020;17:62. doi: 10.1186/s12984-020-00685-3.
    1. Godfrey A., Del Din S., Barry G., Mathers J.C., Rochester L. Instrumenting gait with an accelerometer: A system and algorithm examination. Med. Eng. Phys. 2015;37:400–407. doi: 10.1016/j.medengphy.2015.02.003.
    1. Del Din S., Godfrey A., Rochester L. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and parkinson’s disease: Toward clinical and at home use. IEEE J. Biomed. Health Inform. 2016;20:838–847. doi: 10.1109/JBHI.2015.2419317.
    1. Allet L., Armand S., de Bie R.A., Golay A., Monnin D., Aminian K., de Bruin E.D. Reliability of diabetic patients’ gait parameters in a challenging environment. Gait Posture. 2008;28:680–686. doi: 10.1016/j.gaitpost.2008.05.006.
    1. Hunter S.W., Divine A., Frengopoulos C., Montero Odasso M. A framework for secondary cognitive and motor tasks in dual-task gait testing in people with mild cognitive impairment. BMC Geriatr. 2018;18:202. doi: 10.1186/s12877-018-0894-0.
    1. Saxena S., Majnemer A., Li K., Beauchamp M., Gagnon I. A cross-sectional analysis on the effects of age on dual tasking in typically developing children. Psychol. Res. 2019;83:104–115. doi: 10.1007/s00426-018-1126-0.
    1. Chen A., Kirkland M.C., Wadden K.P., Wallack E.M., Ploughman M. Reliability of gait and dual-task measures in multiple sclerosis. Gait Posture. 2020;78:19–25. doi: 10.1016/j.gaitpost.2020.03.004.
    1. Decavel P., Moulin T., Sagawa Y. Gait tests in multiple sclerosis: Reliability and cut-off values. Gait Posture. 2019;67:37–42. doi: 10.1016/j.gaitpost.2018.09.020.
    1. Muhaidat J., Kerr A., Evans J.J., Skelton D.A. The test-retest reliability of gait-related dual task performance in community-dwelling fallers and non-fallers. Gait Posture. 2013;38:43–50. doi: 10.1016/j.gaitpost.2012.10.011.
    1. Plummer P., Grewal G., Najafi B., Ballard A. Instructions and skill level influence reliability of dual-task performance in young adults. Gait Posture. 2015;41:964–967. doi: 10.1016/j.gaitpost.2015.03.348.
    1. Brown K.C., Hanson H.M., Firmani F., Liu D., McAllister M.M., Merali K., Puyat J.H., Ashe M.C. Gait speed and variability for usual pace and pedestrian crossing conditions in older adults using the gaitrite walkway. Gerontol. Geriatr. Med. 2015 doi: 10.1177/2333721415618858.
    1. Afilalo J., Sharma A., Zhang S., Brennan J.M., Edwards F.H., Mack M.J., McClurken J.B., Cleveland J.C., Smith P.K., Shahian D.M., et al. Gait speed and 1-year mortality following cardiac surgery: A landmark analysis from the society of thoracic surgeons adult cardiac surgery database. J. Am. Heart Assoc. 2018;7:e010139. doi: 10.1161/JAHA.118.010139.
    1. Brach J.S., Perera S., Studenski S., Newman A.B. The reliability and validity of measures of gait variability in community-dwelling older adults. Arch. Phys. Med. Rehabil. 2008;89:2293–2296. doi: 10.1016/j.apmr.2008.06.010.
    1. Stone M.A., Pomeroy E., Keat A., Sengupta R., Hickey S., Dieppe P., Gooberman-Hill R., Mogg R., Richardson J., Inman R.D. Assessment of the impact of flares in ankylosing spondylitis disease activity using the Flare Illustration. Rheumatology. 2008;47:1213–1218. doi: 10.1093/rheumatology/ken176.
    1. Najafi S., Rezasoltani Z., Abedi M. Effects of mechanical low back pain in spatiotemporal parameters of gait. J. Arch. Mil. Med. 2018;6 doi: 10.5812/jamm.82816.
    1. Smith E., Cusack T., Cunningham C., Blake C. The influence of a cognitive dual task on the gait parameters of healthy older adults: A systematic review and meta-analysis. J. Aging Phys. Act. 2017;25:671–686. doi: 10.1123/japa.2016-0265.
    1. Çınar E., Akkoç Y., Karapolat H., Durusoy R., Keser G. Postural deformities: Potential morbidities to cause balance problems in patients with ankylosing spondylitis? Eur. J. Rheumatol. 2016;3:5–9. doi: 10.5152/eurjrheum.2015.15104.

Source: PubMed

3
Suscribir