CTOTC-08: A multicenter randomized controlled trial of rituximab induction to reduce antibody development and improve outcomes in pediatric lung transplant recipients

Stuart C Sweet, Brian Armstrong, Joshua Blatter, Hyunsook Chin, Carol Conrad, Samuel Goldfarb, Don Hayes Jr, Peter S Heeger, Victoria Lyou, Ernestina Melicoff-Portillo, Thalachallour Mohanakumar, Jonah Odim, Ranjithkumar Ravichandran, Marc Schecter, Gregory A Storch, Gary Visner, Nikki M Williams, Lara Danziger-Isakov, Stuart C Sweet, Brian Armstrong, Joshua Blatter, Hyunsook Chin, Carol Conrad, Samuel Goldfarb, Don Hayes Jr, Peter S Heeger, Victoria Lyou, Ernestina Melicoff-Portillo, Thalachallour Mohanakumar, Jonah Odim, Ranjithkumar Ravichandran, Marc Schecter, Gregory A Storch, Gary Visner, Nikki M Williams, Lara Danziger-Isakov

Abstract

We conducted a randomized, placebo-controlled, double-blind study of pediatric lung transplant recipients, hypothesizing that rituximab plus rabbit anti-thymocyte globulin induction would reduce de novo donor-specific human leukocyte antigen antibodies (DSA) development and improve outcomes. We serially obtained clinical data, blood, and respiratory samples for at least one year posttransplant. We analyzed peripheral blood lymphocytes by flow cytometry, serum for antibody development, and respiratory samples for viral infections using multiplex PCR. Of 45 subjects enrolled, 34 were transplanted and 27 randomized to rituximab (n = 15) or placebo (n = 12). No rituximab-treated subjects versus five placebo-treated subjects developed de novo DSA with mean fluorescence intensity >2000. There was no difference between treatment groups in time to the primary composite outcome endpoint (death, bronchiolitis obliterans syndrome [BOS] grade 0-p, obliterative bronchiolitis or listing for retransplant). A post-hoc analysis substituting more stringent chronic lung allograft dysfunction criteria for BOS 0-p showed no difference in outcome (p = .118). The incidence of adverse events including infection and rejection episodes was no different between treatment groups. Although the study was underpowered, we conclude that rituximab induction may have prevented early DSA development in pediatric lung transplant recipients without adverse effects and may improve outcomes (Clinical Trials: NCT02266888).

Keywords: alloantibody; immunosuppressant - fusion proteins and monoclonal antibodies: B cell specific; immunosuppressive regimens - induction; lung (allograft) function/dysfunction; lung transplantation/pulmonology; pediatrics; translational research/science.

© 2021 The American Society of Transplantation and the American Society of Transplant Surgeons.

References

REFERENCES

    1. Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014;33(2):127-133. doi:10.1016/j.healun.2013.10.022
    1. Verleden GM, Glanville AR, Lease ED, et al. Chronic lung allograft dysfunction: definition, diagnostic criteria, and approaches to treatment-a consensus report from the pulmonary council of the ISHLT. J Heart Lung Transplant. 2019;38(5):493-503. doi:10.1016/j.healun.2019.03.009
    1. DerHovanessian A, Wallace W, Lynch J, Belperio J, Weigt S. Bronchiolitis obliterans syndrome: the Achilles' heel of lung transplantation. Semin Respir Crit Care Med. 2013;34(03):336-351.
    1. Sweet SC. Pediatric lung transplantation. Respir Care. 2017;62(6):776-798. doi:10.4187/respcare.05304
    1. Hayes D, Cherikh WS, Chambers DC, et al. The international thoracic organ transplant registry of the international society for heart and lung transplantation: twenty-second pediatric lung and heart-lung transplantation report-2019; focus theme: donor and recipient size match. J Heart Lung Transplant. 2019;38(10):1015-1027. doi:10.1016/j.healun.2019.08.003
    1. Royer P-J, Olivera-Botello G, Koutsokera A, et al. Chronic lung allograft dysfunction: a systematic review of mechanisms. Transplantation. 2016;100(9):1803-1814. doi:10.1097/TP.0000000000001215
    1. Jaramillo A, Smith MA, Phelan D, et al. Development of ELISA-detected anti-HLA antibodies precedes the development of bronchiolitis obliterans syndrome and correlates with progressive decline in pulmonary function after lung transplantation. Transplant. 1999;67(8):1155-1161. doi:10.1097/00007890-199904270-00012
    1. Palmer SM, Davis RD, Hadjiliadis D, et al. Development of an antibody specific to major histocompatibility antigens detectable by flow cytometry after lung transplant is associated with bronchiolitis obliterans syndrome. Transplant. 2002;74(6):799-804. doi:10.1097/00007890-200209270-00011
    1. Brugière O, Suberbielle C, Thabut G, et al. Lung transplantation in patients with pretransplantation donor-specific antibodies detected by Luminex assay. Transplant. 2013;95(5):761-765. doi:10.1097/TP.0b013e31827afb0f
    1. Le Pavec J, Suberbielle C, Lamrani L, et al. De-novo donor-specific anti-HLA antibodies 30 days after lung transplantation are associated with a worse outcome. The Journal of Heart and Lung Transplantation. 2016;35(9):1067-1077. doi:10.1016/j.healun.2016.05.020.
    1. Verleden SE, Vanaudenaerde BM, Emonds M-P, et al. Donor-specific and -nonspecific HLA antibodies and outcome post lung transplantation. Eur Respir J. 2017;50(5):1701248. doi:10.1183/13993003.01248-2017
    1. Schmitzer M, Winter H, Kneidinger N, et al. Persistence of de novo donor-specific HLA-antibodies after lung transplantation: a potential marker of decreased patient survival. HLA. 2018;92(1):24-32. doi:10.1111/tan.13306
    1. Sacreas A, Taupin J-L, Emonds M-P, et al. Intragraft donor-specific anti-HLA antibodies in phenotypes of chronic lung allograft dysfunction. Eur Respir J. 2019;54(5):1900847. doi:10.1183/13993003.00847-2019
    1. Iasella CJ, Ensor CR, Marrari M, et al. Donor-specific antibody characteristics, including persistence and complement-binding capacity, increase risk for chronic lung allograft dysfunction. J Heart Lung Transplant. 2020;39(12):1417-1425. doi:10.1016/j.healun.2020.09.003
    1. Smits JM, Vanhaecke J, Haverich A, et al. Three-year survival rates for all consecutive heart-only and lung-only transplants performed in Eurotransplant, 1997-1999. Clin Transpl. 2003:89-100.
    1. Benden C, Goldfarb SB, Edwards LB, et al. The registry of the International Society for Heart and Lung Transplantation: seventeenth official pediatric lung and heart-lung transplantation report-2014; focus theme: retransplantation. J Heart Lung Transplant. 2014;33(10):1025-1033. doi:10.1016/j.healun.2014.08.005
    1. Starnes VA, Bowdish ME, Woo MS, et al. A decade of living lobar lung transplantation: recipient outcomes. J Thorac Cardiovasc Surg. 2004;127(1):114-122. doi:10.1016/j.jtcvs.2003.07.042
    1. Bian H, Harris PE, Mulder A, Reed EF. Anti-HLA antibody ligation to HLA class I molecules expressed by endothelial cells stimulates tyrosine phosphorylation, inositol phosphate generation, and proliferation. Hum Immunol. 1997;53(1):90-97. doi:10.1016/S0198-8859(96)00272-8
    1. Harris PE, Bian H, Reed EF. Induction of high affinity fibroblast growth factor receptor expression and proliferation in human endothelial cells by anti-HLA antibodies: a possible mechanism for transplant atherosclerosis. J Immunol. 1997;159(11):5697-5704.
    1. Jaramillo A, Smith CR, Maruyama T, Zhang L, Patterson GA, Mohanakumar T. Anti-HLA class I antibody binding to airway epithelial cells induces production of fibrogenic growth factors and apoptotic cell death: a possible mechanism for bronchiolitis obliterans syndrome. Hum Immunol. 2003;64(5):521-529. doi:10.1016/s0198-8859(03)00038-7
    1. Reznik SI, Jaramillo A, Zhang L, Patterson GA, Cooper JD, Mohanakumar T. Anti-HLA antibody binding to hla class I molecules induces proliferation of airway epithelial cells: a potential mechanism for bronchiolitis obliterans syndrome. J Thorac Cardiovasc Surg. 2000;119(1):39-45. doi:10.1016/s0022-5223(00)70215-7
    1. Parkes MD, Halloran PF, Hidalgo LG. Mechanistic sharing between NK cells in ABMR and effector T cells in TCMR. Am J Transplant. 2018;18(1):63-73. doi:10.1111/ajt.14410
    1. Calabrese DR, Lanier LL, Greenland JR. Natural killer cells in lung transplantation. Thorax. 2019;74(4):397-404. doi:10.1136/thoraxjnl-2018-212345
    1. Rituximab PMD. an anti-CD20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6(5p1):859-866. doi:10.1111/j.1600-6143.2006.01288.x
    1. Rehnberg M, Amu S, Tarkowski A, Bokarewa MI, Brisslert M. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11(4):R123;. doi:10.1186/ar2789
    1. Kavcic M, Fisher BT, Seif AE, et al. Leveraging administrative data to monitor rituximab use in 2875 patients at 42 freestanding children's hospitals across the United States. J Pediatr. 2013;162(6):1252-1258.e1. doi:10.1016/j.jpeds.2012.11.038
    1. Tydén G, Genberg H, Tollemar J, et al. A randomized, doubleblind, placebo-controlled, study of single-dose rituximab as induction in renal transplantation. Transplant. 2009;87(9):1325-1329. doi:10.1097/TP.0b013e3181a235fd
    1. Estenne M, Maurer JR, Boehler A, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002;21(3):297-310. doi:10.1016/s1053-2498(02)00398-4
    1. Christie JD, Carby M, Bag R, et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005;24(10):1454-1459.
    1. Husain S, Mooney ML, Danziger-Isakov L, et al. A 2010 working formulation for the standardization of definitions of infections in cardiothoracic transplant recipients. J Heart Lung Transplant. 2011;30(4):361-374. doi:10.1016/j.healun.2011.01.701
    1. Golocheikine A, Nath DS, Ilias Basha H, et al. Increased erythrocyte C4D is associated with known alloantibody and autoantibody markers of antibody-mediated rejection in human lung transplant recipients. J Heart Lung Transplant. 2010;29(4):410-416. doi:10.1016/j.healun.2009.10.003
    1. Reed EF, Rao P, Zhang Z, et al. Comprehensive assessment and standardization of solid phase multiplex-bead arrays for the detection of antibodies to HLA. Am J Transplant. 2013;13(7):1859-1870. doi:10.1111/ajt.12287
    1. Goers TA, Ramachandran S, Aloush A, Trulock E, Patterson GA, Mohanakumar T. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol. 2008;180(7):4487-4494. doi:10.4049/jimmunol.180.7.4487
    1. Szatmary P, Jones J, Hammad A, Middleton D. Impact of sensitivity of human leucocyte antigen antibody detection by Luminex technology on graft loss at 1 year. Clin Kidney J. 2013;6(3):283-286. doi:10.1093/ckj/sft037
    1. Sweet SC, Chin H, Conrad C, et al. Absence of evidence that respiratory viral infections influence pediatric lung transplantation outcomes: results of the CTOTC-03 study. Am J Transplant. 2019;19(12):3284-3298. doi:10.1111/ajt.15505
    1. Cherukuri A, Rothstein DM, Clark B, et al. Immunologic human renal allograft injury associates with an altered IL-10/TNF-α expression ratio in regulatory B cells. J Am Soc Nephrol. 2014;25(7):1575-1585. doi:10.1681/asn.2013080837
    1. Clatworthy MR, Watson CJE, Plotnek G, et al. B-cell-depleting induction therapy and acute cellular rejection. N Engl J Med. 2009;360(25):2683-2685. doi:10.1056/NEJMc0808481
    1. van den Hoogen MWF, Kamburova EG, Baas MC, et al. Rituximab as induction therapy after renal transplantation: a randomized, double-blind, placebo-controlled study of efficacy and safety. Am J Transplant. 2015;15(2):407-416. doi:10.1111/ajt.13052
    1. Macklin PS, Morris PJ, Knight SR. A systematic review of the use of rituximab as induction therapy in renal transplantation. Transplant Rev (Orlando). 2015;29(2):103-108. doi:10.1016/j.trre.2014.12.001
    1. Starling RC, Armstrong B, Bridges ND, et al. Accelerated allograft vasculopathy with rituximab after cardiac transplantation. J Am Coll Cardiol. 2019;74(1):36-51. doi:10.1016/j.jacc.2019.04.056
    1. Agarwal A, Vieira CA, Book BK, Sidner RA, Fineberg NS, Pescovitz MD. Rituximab, anti-CD20, induces In vivo cytokine release but does not impair ex vivo T-cell responses. Am J Transplant. 2004;4(8):1357-1360.
    1. Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. Journal of Clinical Investigation. 2008;118(10):3420-3430. doi:10.1172/jci36030
    1. Bigot J, Pilon C, Matignon M, et al. Transcriptomic signature of the CD24hiCD38hi transitional B cells associated with an immunoregulatory phenotype in renal transplant recipients. Am J Transplant. 2016;16(12):3430-3442. doi:10.1111/ajt.13904
    1. Trouvin A-P, Jacquot S, Grigioni S, et al. Usefulness of monitoring of B cell depletion in rituximab-treated rheumatoid arthritis patients in order to predict clinical relapse: a prospective observational study. Clin Exp Immunol. 2015;180(1):11-18. doi:10.1111/cei.12481
    1. Gurkan S, Luan Y, Dhillon N, et al. Immune reconstitution following rabbit antithymocyte globulin. Am J Transplant. 2010;10(9):2132-2141. doi:10.1111/j.1600-6143.2010.03210.x
    1. Kulkarni HS, Tsui K, Sunder S, et al. Pseudomonas aeruginosa and acute rejection independently increase the risk of donor-specific antibodies after lung transplantation. Am J Transplant. 2020;20(4):1028-1038. doi:10.1111/ajt.15687
    1. Chambers DC, Cherikh WS, Harhay MO, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult lung and heart-lung transplantation Report-2019; focus theme: donor and recipient size match. J Heart Lung Transplant. 2019;38(10):1042-1055. doi:10.1016/j.healun.2019.08.001

Source: PubMed

3
Suscribir