Individualized positive end-expiratory pressure guided by end-expiratory lung volume in early acute respiratory distress syndrome: study protocol for the multicenter, randomized IPERPEEP trial

Domenico Luca Grieco, Salvatore Maurizio Maggiore, Giacomo Bellani, Savino Spadaro, Elena Spinelli, Tommaso Tonetti, Luca S Menga, Marco Pozzi, Denise Battaglini, Rosa Di Mussi, Andrea Bruni, Andrea De Gaetano, Carmine Giovanni Iovino, Matteo Brioni, Francesco Mojoli, Giuseppe Foti, Carlo Aberto Volta, Paolo Pelosi, Paolo Navalesi, Salvatore Grasso, V Marco Ranieri, Massimo Antonelli, IPERPEEP study group, Domenico Luca Grieco, Salvatore Maurizio Maggiore, Giacomo Bellani, Savino Spadaro, Elena Spinelli, Tommaso Tonetti, Luca S Menga, Marco Pozzi, Denise Battaglini, Rosa Di Mussi, Andrea Bruni, Andrea De Gaetano, Carmine Giovanni Iovino, Matteo Brioni, Francesco Mojoli, Giuseppe Foti, Carlo Aberto Volta, Paolo Pelosi, Paolo Navalesi, Salvatore Grasso, V Marco Ranieri, Massimo Antonelli, IPERPEEP study group

Abstract

Background: In acute respiratory distress syndrome (ARDS), response to positive end-expiratory pressure (PEEP) is variable according to different degrees of lung recruitability. The search for a tool to individualize PEEP based on patients' individual response is warranted. End-expiratory lung volume (EELV) assessment by nitrogen washing-washout aids bedside estimation of PEEP-induced alveolar recruitment and may therefore help titrate PEEP on patient's individual recruitability. We designed a randomized trial to test whether an individualized PEEP setting protocol driven by EELV measurement may improve a composite clinical outcome in patients with moderate-to-severe ARDS (IPERPEEP trial).

Methods: IPERPEEP is an open-label, multicenter, randomized trial that will be conducted in 10 intensive care units in Italy and will enroll 132 ARDS patients showing PaO2/FiO2 ratio ≤ 150 mmHg within 24 h from endotracheal intubation while on mechanical ventilation with PEEP 5 cmH2O. To standardize lung volumes at study initiation, all patients will undergo mechanical ventilation with tidal volume of 6 ml/kg of predicted body weight and PEEP set to obtain a plateau pressure within 28 and 30 cmH2O for 30 min (EXPRESS PEEP). Afterwards, a 5-step decremental PEEP trial will be conducted (EXPRESS PEEP to PEEP 5 cmH2O), and EELV will be measured at each step. Recruitment-to-inflation ratio will be calculated for each PEEP range from EELV difference. Patients will be then randomized to receive mechanical ventilation with PEEP set according to the optimal recruitment observed in the PEEP trial (IPERPEEP arm) trial or to achieve a plateau pressure of 28-30 cmH2O (control arm, EXPRESS strategy). In both groups, tidal volume size, use of prone positioning and neuromuscular blocking agents, and weaning from PEEP and from mechanical ventilation will be standardized. The primary endpoint of the study is a composite clinical outcome incorporating in-ICU mortality, 60-day ventilator-free days, and serum interleukin-6 concentration over the course of the initial 72 h of treatment.

Discussion: The IPERPEEP study is a randomized trial powered to elucidate whether an individualized PEEP setting protocol based on bedside assessment of lung recruitability can improve a composite clinical outcome during moderate-to-severe ARDS.

Trial registration: ClinicalTrials.gov NCT04012073 . Registered 9 July 2019.

Keywords: Acute respiratory distress syndrome; Mechanical ventilation; Positive end-expiratory pressure; Ventilator-induced lung injury.

Conflict of interest statement

MA and DLG declare a research grant by General Electric healthcare for the conduction of this study. The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Standard Protocol Items: Recommendation for Interventional Trials (SPIRIT) schedule of enrollment, interventions, and assessments. SOFA, Sequential Organ Failure Assessment; CPIS, clinical pulmonary index score; RASS, Ramsay Agitation Sedation Scale; ICU, intensive care unit
Fig. 2
Fig. 2
Graphical representation of study procedures before randomization and after randomization in the IPERPEEP arm

References

    1. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54–61. doi: 10.1001/jama.282.1.54.
    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–354. doi: 10.1056/NEJM199802053380602\nhttp://.
    1. Network ARDS, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Amato MBP, Meade MO, Slutsky AS, Brochard L, EL V C, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–755. doi: 10.1056/NEJMsa1410639.
    1. Grieco DL, Chen L, Dres M, Brochard L. Should we use driving pressure to set tidal volume. Curr Opin Crit Care. 2017;23(1):38–44. doi: 10.1097/MCC.0000000000000377.
    1. Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, et al. Lung and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020; Available from: .
    1. Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med. 2001;163:1609–1613. doi: 10.1164/ajrccm.163.7.2004215.
    1. Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med Am Thoracic Soc AJRCCM. 2001;164:795–801. doi: 10.1164/ajrccm.164.5.2006071.
    1. Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, Hedenstierna G, Slutsky AS, Ranieri VM. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004;32(4):1018–1027. doi: 10.1097/.
    1. Mercat A, Richard JM, Vielle B, Jaber S, Osman D, Diehl J-L, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–655. doi: 10.1001/jama.299.6.646.
    1. Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, Blanco J, et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med. 2016;44:32–42. doi: 10.1097/CCM.0000000000001383.
    1. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–336. doi: 10.1056/NEJMoa032193.
    1. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–645. doi: 10.1001/jama.299.6.637.
    1. Grasso S, Stripoli T, Sacchi M, Trerotoli P, Staffieri F, Franchini D, et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med. 2009;180:415–423. doi: 10.1164/rccm.200901-0156OC.
    1. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani D de M, Damiani LP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318:1335–1345. doi: 10.1001/jama.2017.14171.
    1. Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–873. doi: 10.1001/jama.2010.218.
    1. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med, 86. 2006;354:1775 Available from: .
    1. Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42:252–264. doi: 10.1097/CCM.0b013e3182a6384f.
    1. Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. a clinical trial. Am J Respir Crit Care Med. 2020;201:178–187. doi: 10.1164/rccm.201902-0334OC.
    1. Spinelli E, Grieco DL, Mauri T. A personalized approach to the acute respiratory distress syndrome: recent advances and future challenges. J Thorac Dis. 2019;11:5619–5625. doi: 10.21037/jtd.2019.11.61.
    1. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–2104. doi: 10.1056/NEJMoa0708638.
    1. Beitler JR, Sarge T, Banner-Goodspeed VM, Gong MN, Cook D, Novack V, et al. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: A R. JAMA. 2019:1–12 Available from: .
    1. Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;37:1595–1604. doi: 10.1007/s00134-011-2333-y.
    1. Chiumello D, Cressoni M, Chierichetti M, Tallarini F, Botticelli M, Berto V, et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care. 2008;12:R150. doi: 10.1186/cc7139.
    1. Richard J-C, Pouzot C, Pinzón AM, González JST, Orkisz M, Neyran B, et al. Reliability of the nitrogen washin-washout technique to assess end-expiratory lung volume at variable PEEP and tidal volumes. Intensive care Med Exp. Springer. 2014;2:10. doi: 10.1186/2197-425X-2-10.
    1. ARDS Definition Task Force. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Caironi P, Carlesso E, Cressoni M, Chiumello D, Moerer O, Chiurazzi C, et al. Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure. Crit Care Med. 2015;43:781–790. doi: 10.1097/CCM.0000000000000770.
    1. Pitoni S, D’Arrigo S, Grieco DL, Idone FA, Santantonio MT, Di Giannatale P, et al. Tidal volume lowering by instrumental dead space reduction in brain-injured ARDS patients: effects on respiratory mechanics, gas exchange, and cerebral hemodynamics. US: Neurocrit Care. Springer; 2020.
    1. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Me. 2014;189:520–531. doi: 10.1164/rccm.201312-2193CI.
    1. Grieco DL, Chen L, Brochard L. Transpulmonary pressure: importance and limits. Ann Transl Med. 2017;5:285. doi: 10.21037/atm.2017.07.22.
    1. Grieco DL, Anzellotti GM, Russo A, Bongiovanni F, Costantini B, D’Indinosante M, et al. Airway closure during surgical pneumoperitoneum in obese patients. Anesthesiology. 2019;131:1–16. doi: 10.1097/ALN.0000000000002662.
    1. Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197:132–136. doi: 10.1164/rccm.201702-0388LE.
    1. Grieco DL, Bongiovanni F, Chen L, Menga LS, Cutuli SL, Pintaudi G, Carelli S, Michi T, Torrini F, Lombardi G, Anzellotti GM, de Pascale G, Urbani A, Bocci MG, Tanzarella ES, Bello G, Dell'Anna AM, Maggiore SM, Brochard L, Antonelli M. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care. 2020;24(1):529. doi: 10.1186/s13054-020-03253-2.
    1. Malatesta C, Mele F, Menga LS, Bello G, Grieco DL, Antonelli M. Airway closure and fiberoptic evidence of bronchial collapse during the acute respiratory distress syndrome. Intensive Care Med. Springer Berlin Heidelberg. 2019:7–8. Available from. 10.1007/s00134-019-05800-0.
    1. Bein T, Weber-Carstens S, Goldmann A, Müller T, Staudinger T, Brederlau J, Muellenbach R, Dembinski R, Graf BM, Wewalka M, Philipp A, Wernecke KD, Lubnow M, Slutsky AS. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS: The prospective randomized Xtravent-study. Intensive Care Med. 2013;39(5):847–856. doi: 10.1007/s00134-012-2787-6.
    1. Grieco DL, Russo A, Romanò B, Anzellotti GM, Ciocchetti P, Torrini F, et al. Lung volumes, respiratory mechanics and dynamic strain during general anaesthesia. Br J Anaesth. 2018;121:1156–1165. doi: 10.1016/j.bja.2018.03.022.

Source: PubMed

3
Suscribir