Endurance exercise and gut microbiota: A review

Núria Mach, Dolors Fuster-Botella, Núria Mach, Dolors Fuster-Botella

Abstract

Background: The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation, redox reactions, and hydration status.

Methods: A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, ClinicalTrials.gov, ScienceDirect, Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response", "microbiota", "nutrition", and "probiotics".

Results: Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels.

Conclusion: The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.

Keywords: Endurance; Exercise; Immune response; Microbiota; Nutrition; Probiotics.

Figures

Fig. 1
Fig. 1
The physiological and biochemical demands of endurance exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include an improvement of mechanical, metabolic, neuromuscular and contractile functions in muscle, a rebalance of electrolytes, a decrease in glycogen storage and an increase in mitochondrial biogenesis in muscle tissue. Moreover, endurance exercise has a profound impact on oxidative stress, intestinal permeability, muscle damage, systemic inflammation and immune responses. Additionally, there is increased ventilation and pumping function of the heart associated with substantially decreased peripheral vascular resistance in the muscles. This facilitates the delivery of oxygen and nutrients to working muscles, which consume high amounts of oxygen and nutrients, especially when exercise intensity increases. ↑: increases; ↔: no change in response; ↓: decreases; ↕: may increase or decrease.
Fig. 2
Fig. 2
Complex polysaccharides are metabolized by the colonic microbiota to oligosaccharides and monosaccharides and then fermented to short-chain fatty acid (SCFA) end products, mainly acetate, propionate, and butyrate. The SCFAs are absorbed in the colon, where butyrate provides energy for colonic epithelial cells, and acetate and propionate reach the liver and peripheral organs, where they are substrates for gluconeogenesis and lipogenesis. The types and amount of SCFAs produced by gut microorganisms are determined by the composition of the gut microbiota and the metabolic interactions between specie. In addition to being energy sources, SCFAs control colonic gene expression involved in the immune response. It must be borne in mind that endurance diets are rich in protein (1.2–1.6 g/kg/day), which besides liberating beneficial SCFAs, produces a range of potentially harmful compounds in the intestine.
Fig. 3
Fig. 3
Endurance: crosstalk between intestinal microbiota, immune responses and redox status. Endurance exercise may cause an increase in the number of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-1 receptor antagonist, TNF receptors, but also anti-inflammatory modulators (e.g., IL-10, IL-8), sIgA and intestinal lymphocytes. In turn, this inflammatory response may induce disbiosis and modifications of intestinal microbiome composition and their secreted products. Additionally there is an increase of tissue hyperthermia, gastrointestinal permeability and destruction of gut mucous thickness. Moreover, the activity of antioxidant enzymes may become weaker, which modify the mesenteric redox environment. In parallel, the epithelial barrier disruption enhances the TLRs-mediated recognition of gut commensal bacteria by effector cell types, which potentiate the immune response. IgA = immunoglobulin A; IL = interleukin; RONS = reactive oxygen and nitrogen species; ROS = reactive oxygen species; sIgA = secretory IgA; TLRs = toll-like receptors; TNF = tumor necrosis factor.

References

    1. Joyner M.J., Coyle E.F. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44.
    1. Russell A.P., Lamon S., Boon H., Wada S., Güller I., Brown E.L. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol. 2013;591:4637–4653.
    1. Munoz A., Riber C., Trigo P., Castejon-Riber C., Castejon F.M. Dehydration, electrolyte imbalances and renin-angiotensin-aldosterone-vasopressin axis in successful and unsuccessful endurance horses. Equine Vet J. 2010;42:83–90.
    1. Snow D.H., Baxter P., Rose R.J. Muscle fibre composition and glycogen depletion in horses competing in an endurance ride. Vet Rec. 1981;108:374–378.
    1. Davies K.J., Packer L., Brooks G.A. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys. 1981;209:539–554.
    1. Devenport L., Doughty D., Heiberger B., Burton D., Brown R., Stith R. Exercise endurance in rats: roles of type I and II corticosteroid receptors. Physiol Behav. 1993;53:1171–1175.
    1. Hooper L.V., Gordon J.I. Commensal host–bacterial relationships in the gut. Science. 2001;292:1115–1118.
    1. Rajilic-Stojanovic M., de Vos W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38:996–1047.
    1. Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–339.
    1. Hsu Y.J., Chiu C.C., Li Y.P., Huang W.C., Huang Y.T., Huang C.C. Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 2015;29:552–558.
    1. Samuel B.S., Shaito A., Motoike T., Rey F.E., Backhed F., Manchester J.K. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA. 2008;105:16767–16772.
    1. Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141.
    1. Neish A.S. Mucosal immunity and the microbiome. Ann Am Thorac Soc. 2014;11(Suppl. 1):S28–32.
    1. Lamprecht M., Frauwallner A. Exercise, intestinal barrier dysfunction and probiotic supplementation. Med Sport Sci. 2012;59:47–56.
    1. Clarke S.F., Murphy E.F., O'Sullivan O., Lucey A.J., Humphreys M., Hogan A. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920.
    1. McFadzean R. 2014. Exercise can help modulate human gut microbiota. Boulder, Co: University of Colorado. Dissertation.
    1. Evans C.C., LePard K.J., Kwak J.W., Stancukas M.C., Laskowski S., Dougherty J. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9 e92193.
    1. Queipo-Ortuno M.I., Seoane L.M., Murri M., Pardo M., Gomez-Zumaquero J.M., Cardona F. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 2013;8 e65465.
    1. Lambert J.E., Myslicki J.P., Bomhof M.R., Belke D.D., Shearer J., Reimer R.A. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40:749–752.
    1. Kang S.S., Jeraldo P.R., Kurti A., Miller M.E., Cook M.D., Whitlock K. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener. 2014;9:36.
    1. Choi J.J., Eum S.Y., Rampersaud E., Daunert S., Abreu M.T., Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121:725–730.
    1. Xu J., Xu C., Chen X., Cai X., Yang S., Sheng Y. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition. 2014;30:584–589.
    1. Redondo N., Gheorghe A., Serrano R., Nova E., Marcos A. HYDRAGUT study: influence of HYDRAtion status on the GUT microbiota and their impact on the immune system. The FASEB J. 2015;29(Suppl. 1):593.
    1. Shamseer L., Moher D., Clarke M., Ghersi D., Liberati A., Petticrew M. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647.
    1. O'Sullivan O., Cronin O., Clarke S.F., Murphy E.F., Molloy M.G., Shanahan F. Exercise and the microbiota. Gut Microbes. 2015;6:131–136.
    1. Cronin O., Molloy M.G., Shanahan F. Exercise, fitness, and the gut. Curr Opin Gastroenterol. 2016;32:67–73.
    1. Boveris A., Navarro A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic Biol Med. 2008;44:224–229.
    1. Clavel T., Desmarchelier C., Haller D., Gérard P., Rohn S., Lepage P. Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance. Gut Microbes. 2014;5:544–551.
    1. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W. Host–gut microbiota metabolic interactions. Science. 2012;336:1262–1267.
    1. Schloss P.D., Schubert A.M., Zackular J.P., Iverson K.D., Young V.B., Petrosino J.F. Stabilization of the murine gut microbiome following weaning. Gut Microbes. 2012;3:383–393.
    1. Spor A., Koren O., Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–290.
    1. Bearson S.M., Allen H.K., Bearson B.L., Looft T., Brunelle B.W., Kich J.D. Profiling the gastrointestinal microbiota in response to Salmonella: low versus high Salmonella shedding in the natural porcine host. Infect Genet Evol. 2013;16:330–340.
    1. Vandeputte D., Falony G., Vieira-Silva S., Tito R.Y., Joossens M., Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65:57–62.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546.
    1. Matsumoto M., Inoue R., Tsukahara T., Ushida K., Chiji H., Matsubara N. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem. 2008;72:572–576.
    1. Petriz B.A., Castro A.P., Almeida J.A., Gomes C.P., Fernandes G.R., Kruger R.H. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.
    1. Karl J.P., Margolis L.M., Madslien E.H., Murphy N.E., Castellani J.W., Gundersen Y. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol. 2017;312:G559–71.
    1. Cairns S.P. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36:279–291.
    1. Opitz D., Lenzen E., Opiolka A., Redmann M., Hellmich M., Bloch W. Endurance training alters basal erythrocyte MCT-1 contents and affects the lactate distribution between plasma and red blood cells in T2DM men following maximal exercise. Can J Physiol Pharmacol. 2015;93:413–419.
    1. Pyne D.B., West N.P., Cox A.J., Cripps A.W. Probiotics supplementation for athletes—clinical and physiological effects. Eur J Sport Sci. 2015;15:63–72.
    1. Hold G.L. The gut microbiota, dietary extremes and exercise. Gut. 2014;63:1838–1839.
    1. Musso G., Gambino R., Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–380.
    1. Pimentel M., Lin H.C., Enayati P., van den Burg B., Lee H.R., Chen J.H. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1089–95.
    1. Gibson G.R., Cummings J.H., Macfarlane G.T. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol. 1988;65:241–247.
    1. Wong J.M., de Souza R., Kendall C.W., Emam A., Jenkins D.J. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–243.
    1. Jumpertz R., Le D.S., Turnbaugh P.J., Trinidad C., Bogardus C., Gordon J.I. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58–65.
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–14696.
    1. Mach N., Berri M., Estellé J., Levenez F., Lemonnier G., Denis C. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep. 2015;7:554–569.
    1. Antonio J., Kalman D., Stout J.R., Greenwood M., Willoughby D.S., Haff G.G., editors. Essentials of sports nutrition and supplements. Humana Press; Totowa, NJ: 2008.
    1. Tipton K.D., Witard O.C. Protein requirements and recommendations for athletes: relevance of ivory tower arguments for practical recommendations. Clin Sports Med. 2007;26:17–36.
    1. Rodriguez N.R., Vislocky L.M., Gaine P.C. Dietary protein, endurance exercise, and human skeletal-muscle protein turnover. Curr Opin Clin Nutr Metab Care. 2007;10:40–45.
    1. Windey K., De Preter V., Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56:184–196.
    1. Marlicz W., Loniewski I. The effect of exercise and diet on gut microbial diversity. Gut. 2015;64:519–520.
    1. Ray K. Gut microbiota. Tackling the effects of diet and exercise on the gut microbiota. Nat Rev Gastroenterol Hepatol. 2014;11:456.
    1. Liu W.Y., da Lu J., Du X.M., Sun J.Q., Ge J., Wang R.W. Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men—the role of gut microbiota composition: study protocol for the AELC randomized controlled trial. BMC Public Health. 2014;14:48.
    1. Shephard R.J., Shek P.N. Potential impact of physical activity and sport on the immune system—a brief review. Br J Sports Med. 1994;28:247–255.
    1. Brenner I., Shek P.N., Zamecnik J., Shephard R.J. Stress hormones and the immunological responses to heat and exercise. Int J Sports Med. 1998;19:130–143.
    1. Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103:693–699.
    1. Cannon J.G., Evans W.J., Hughes V.A., Meredith C.N., Dinarello C.A. Physiological mechanisms contributing to increased interleukin-1 secretion. J Appl Physiol. 1986;61:1869–1874.
    1. Evans W.J., Meredith C.N., Cannon J.G., Dinarello C.A., Frontera W.R., Hughes V.A. Metabolic changes following eccentric exercise in trained and untrained men. J Appl Physiol. 1986;61:1864–1868.
    1. Pedersen B.K., Toft A.D. Effects of exercise on lymphocytes and cytokines. Br J Sports Med. 2000;34:246–251.
    1. Pervaiz N., Hoffman-Goetz L. Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice. Exerc Immunol Rev. 2012;18:142–157.
    1. Hoffman-Goetz L., Spagnuolo P.A., Guan J. Repeated exercise in mice alters expression of IL-10 and TNF-α in intestinal lymphocytes. Brain Behav Immun. 2008;22:195–199.
    1. Palm N.W., de Zoete M.R., Cullen T.W., Barry N.A., Stefanowski J., Hao L. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–1010.
    1. Viloria M., Lara-Padilla E., Campos-Rodríguez R., Jarillo-Luna A., Reyna-Garfias H., López-Sánchez P. Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunol Invest. 2011;40:640–656.
    1. Neville V., Gleeson M., Follan J.P. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40:1228–1236.
    1. Kekkonen R.A., Vasankari T.J., Vuorimaa T., Haahtela T., Julkunen I., Korpela R. The effect of probiotics on respiratory infections and gastrointestinal symptoms during training in marathon runners. Int J Sport Nutr Exerc Metab. 2007;17:352–363.
    1. Gleeson M. Immune function in sport and exercise. Appl Physiol. 2007;103:693–699.
    1. Nieman D.C., Johanssen L.M., Lee J.W., Arabatzis K. Infectious episodes in runners before and after the Los-Angeles marathon. J Sports Med Phys Fitness. 1990;30:316–328.
    1. Thomas L.V., Ockhuizen T. New insights into the impact of the intestinal microbiota on health and disease: a symposium report. Br J Nutr. 2012;107(Suppl. 1):S1–13.
    1. Simons S.M., Kennedy R.G. Gastrointestinal problems in runners. Curr Sports Med Rep. 2004;3:112–116.
    1. Trevisi P., De Filippi S., Minieri L., Mazzoni M., Modesto M., Biavati B. Effect of fructo-oligosaccharides and different doses of Bifidobacterium animalis in a weaning diet on bacterial translocation and Toll-like receptor gene expression in pigs. Nutrition. 2008;24:1023–1029.
    1. Spadoni I., Zagato E., Bertocchi A., Paolinelli R., Hot E., Di Sabatino A. A gut–vascular barrier controls the systemic dissemination of bacteria. Science. 2015;350:830–834.
    1. Jeukendrup A.E., Vet-Joop K., Sturk A., Stegen J.H., Senden J., Saris W.H. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin Sci. 2000;98:47–55.
    1. Marycz K., Mierzejewska K., Śmieszek A., Suszynska E., Malicka I., Kucia M. Endurance exercise mobilizes developmentally early stem cells into peripheral blood and increases their number in bone marrow: implications for tissue regeneration. Stem Cells Int. 2016;2016:5756901.
    1. Bessa A., Oliveira V.N., Agostini G., Oliveira R.J., Oliveira A.C., White G.E. Exercise intensity and recovery: biomarkers of injury, inflammation and oxidative stress. J Strength Cond Res. 2016;30:311–319.
    1. Circu M.L., Aw T.Y. Intestinal redox biology and oxidative stress. Semin Cell Dev Biol. 2012;23:729–737.
    1. Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–354.
    1. Lamprecht M., Bogner S., Schippinger G., Steinbauer K., Fankhauser F., Hallstroem S. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr. 2012;9:45.
    1. Ghosh S., Dai C., Brown K., Rajendiran E., Makarenko S., Baker J. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol. 2011;301:G39–49.
    1. Mardinoglu A., Shoaie S., Bergentall M., Ghaffari P., Zhang C., Larsson E. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2015;11:834.
    1. Dobashi Y., Yoshimura H., Atarashi E., Takahashi K., Tohei A., Amao H. Upregulation of superoxide dismutase activity in the intestinal tract mucosa of germ-free mice. J Vet Med Sci. 2013;75:49–54.
    1. Armstrong L.E., Costill D.L., Fink W.J. Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc. 1985;17:456–461.
    1. Colgan S.P. Swimming through the gut: implications of fluid transport on the microbiome. Dig Dis Sci. 2013;58:602–603.
    1. Musch M.W., Wang Y., Claud E.C., Chang E.B. Lubiprostone decreases mouse colonic inner mucus layer thickness and alters intestinal microbiota. Dig Dis Sci. 2013;58:668–677.
    1. Keely S., Kelly C.J., Weissmueller T., Burgess A., Wagner B.D., Robertson C.E. Activated fluid transport regulates bacterial–epithelial interactions and significantly shifts the murine colonic microbiome. Gut Microbes. 2012;3:250–260.
    1. Sollanek K.J., Kenefick R.W., Cheuvront S.N., Axtell R.S. Potential impact of a 500-mL water bolus and body mass on plasma osmolality dilution. Eur J Appl Physiol. 2011;111:1999–2004.
    1. Gleeson M., Bishop N.C., Oliveira M., Tauler P. Daily probiotic's (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metab. 2011;21:55–64.
    1. Salarkia N., Ghadamli L., Zaeri F., Sabaghian Rad L. Effects of probiotic yogurt on performance, respiratory and digestive systems of young adult female endurance swimmers: a randomized controlled trial. Med J Islam Repub Iran. 2013;27:141–146.
    1. Cox A.J., Pyne D.B., Saunders P.U., Fricker P.A. Oral administration of the probiotic Lactobacillus fermentum VRI-003 and mucosal immunity in endurance athletes. Br J Sports Med. 2010;44:222–226.
    1. Clancy R.L., Gleeson M., Cox A., Callister R., Dorrington M., D'Este C. Reversal in fatigued athletes of a defect in interferon gamma secretion after administration of Lactobacillus acidophilus. Br J Sports Med. 2006;40:351–354.
    1. Handzlik M.K., Shaw A.J., Dungey M., Bishop N.C., Gleeson M. The influence of exercise training status on antigen-stimulated IL-10 production in whole blood culture and numbers of circulating regulatory T cells. Eur J Appl Physiol. 2013;113:1839–1848.
    1. Cosgrove C., Galloway S.D., Neal C., Hunter A.M., McFarlin B.K., Spielmann G. The impact of 6-month training preparation for an Ironman triathlon on the proportions of naive, memory and senescent T cells in resting blood. Eur J Appl Physiol. 2012;112:2989–2998.
    1. Perry C., Pick M., Bdolach N., Hazan-Halevi I., Kay S., Berr I. Endurance exercise diverts the balance between Th17 cells and regulatory T cells. PLoS One. 2013;8 e74722.
    1. West N.P., Horn P.L., Pyne D.B., Gebski V.J., Lahtinen S.J., Fricker P.A. Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin Nutr. 2014;33:581–587.
    1. Haywood B.A., Black K.E., Baker D., McGarvey J., Healey P., Brown R.C. Probiotic supplementation reduces the duration and incidence of infections but not severity in elite rugby union players. J Sci Med Sport. 2014;17:356–360.
    1. West N.P., Pyne D.B., Cripps A.W., Hopkins W.G., Eskesen D.C., Jairath A. Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J. 2011;10:30.
    1. Martarelli D., Verdenelli M.C., Scuri S., Cocchioni M., Silvi S., Cecchini C. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol. 2011;62:1689–1696.
    1. Shing C.M., Peake J.M., Lim C.L., Briskey D., Walsh N.P., Fortes M.B. Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the heat. Eur J Appl Physiol. 2014;114:93–103.
    1. Queipo-Ortuno M.I., Boto-Ordóñez M., Murri M., Gomez-Zumaquero J.M., Clemente-Postigo M., Estruch R. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012;95:1323–1334.
    1. Bolca S., Van de Wiele T., Possemiers S. Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol. 2013;24:220–225.
    1. Gill S.K., Allerton D.M., Ansley-Robson P., Hemmings K., Cox M., Costa R.J. Does short-term high dose probiotic supplementation containing lactobacillus casei attenuate exertional-heat stress induced endotoxaemia and cytokinaemia? Int J Sport Nutr Exerc Metab. 2016;26:268–275.
    1. Gill S.K., Teixeira A.M., Rosado F., Cox M., da Costa R.J. High dose probiotic supplementation containing lactobacillus casei for seven days does not enhance salivary antimicrobial protein responses to exertional-heat stress compared with placebo. Int J Sport Nutr Exerc Metab. 2016;26:150–160.
    1. Gleeson M., Bishop N.C., Oliveira M., McCauley T., Tauler P., Lawrence C. Effects of a Lactobacillus salivarius probiotic intervention on infection, cold symptom duration and severity, and mucosal immunity in endurance athletes. Int J Sport Nutr Exerc Metab. 2012;22:235–242.
    1. Nieman D.C., Scherr J., Luo B., Meaney M.P., Dréau D., Sha W. Influence of pistachios on performance and exercise-induced inflammation, oxidative stress, immune dysfunction, and metabolite shifts in cyclists: a randomized, crossover trial. PLoS One. 2014;9 e113725.
    1. O'Brien K.V., Stewart L.K., Forney L.A., Aryana K.J., Prinyawiwatkul W., Boeneke C.A. The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. J Dairy Sci. 2015;98:7446–7449.
    1. Salehzadeh S. The effects of probiotic yogurt drink on lipid profile, CRP and record changes in aerobic athletes. Life Sci. 2015;4:32–37.
    1. Valimaki I.A., Vuorimaa T., Ahotupa M., Kekkonen R., Korpela R., Vasankari T. Decreased training volume and increased carbohydrate intake increases oxidized LDL levels. Int J Sports Med. 2012;33:291–296.
    1. Heinonen I., Kalliokoski K.K., Hannukainen J.C., Duncker D.J., Nuutila P., Knuuti J. Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology. 2014;29:421–436.
    1. Tremaroli V., Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249.
    1. Goldszmid R.S., Trinchieri G. The price of immunity. Nat Immunol. 2012;13:932–938.

Source: PubMed

3
Suscribir