Efficacy of gel-based artificial saliva on Candida colonization and saliva properties in xerostomic post-radiotherapy head and neck cancer patients: a randomized controlled trial

Aroonwan Lam-Ubol, Oranart Matangkasombut, Dunyaporn Trachootham, Supanat Tarapan, Vanthana Sattabanasuk, Sineepat Talungchit, Wannaporn Paemuang, Tawaree Phonyiam, Orapin Chokchaitam, On-Ong Mungkung, Aroonwan Lam-Ubol, Oranart Matangkasombut, Dunyaporn Trachootham, Supanat Tarapan, Vanthana Sattabanasuk, Sineepat Talungchit, Wannaporn Paemuang, Tawaree Phonyiam, Orapin Chokchaitam, On-Ong Mungkung

Abstract

Objective: To evaluate the efficacy of an edible artificial saliva gel, oral moisturizing jelly (OMJ), and a topical commercial gel (GC dry mouth gel) on Candida colonization and saliva properties.

Materials and methods: This study was a secondary analysis of a single-blinded randomized controlled trial conducted in xerostomic post-radiotherapy head and neck cancer patients. Candida colonization, stimulated salivary flow rate (SSFR), saliva pH, and buffering capacity (BC) were measured at 0, 1, and 2 months after each intervention. Candida colonization was quantified by colony counts and species identified by Candida Chromagar, polymerase chain reaction, and API 20C AUX system. Statistical significance level was 0.05.

Results: A total of 56 participants in OMJ (N = 30) and GC (N = 26) groups completed the study. OMJ significantly increased saliva pH (p = 0.042) and BC (p = 0.013) after 1-month use, while GC only improved saliva pH (p = 0.027). Both interventions tended to increase SSFR but only GC had a significant increase at 2 months (p = 0.015). GC and OMJ significantly decreased the number of Candida species at 1 and 2 months, respectively. Both groups tended to reduce Candida counts but not significant.

Conclusions: Both OMJ and GC saliva gels could improve saliva pH and decrease the number of Candida species. OMJ is superior to GC in its buffering capacity, while GC may better improve salivary flow rate. Long-term and large-scale study is warranted to test the efficacy of artificial saliva in oral health improvement.

Clinical relevance: OMJ and GC gel could decrease the number of Candida species and improve saliva properties in post-radiation xerostomic patients.

Trial registration number: Clinicaltrials.gov NCT03035825. Date of registration: 25th January 2017.

Keywords: Artificial saliva; Buffering capacity; Candida; Head and neck cancer; Radiotherapy; Xerostomia.

Conflict of interest statement

DT and AL have received a research grant from Dental Innovation Foundation under Royal Patronage. Other authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Participants’ flow chart of the randomized controlled study. Number of participants enrolled, dropped out, and included for data analysis are shown
Fig. 2
Fig. 2
Effect of artificial saliva on stimulated salivary flow rates. Box plot represents median and interquartile (IQ) range of salivary flow rates of participants in the OMJ and GC groups at baseline and after 1 and 2 months of interventions. Whiskers indicate the highest and lowest values no greater than 1.5 times the IQ range. Open circles and triangles represent outliers (values between 1.5 and 3 times the IQ range) and extremes (values more than 3 times the IQ range), respectively. Asterisk (*) indicated a p value of < 0.05 by using related samples Friedman’s test with Bonferroni correction for multiple comparisons.
Fig. 3
Fig. 3
Effect of artificial saliva on saliva pH (a) and buffering capacity (bd). Average saliva pH (a) and buffering capacity (pH after the addition of HCl) (b) of participants in OMJ and GC groups at baseline and after 1 and 2 months of interventions. Asterisk (*) indicates p value < 0.05 by using repeated measure ANOVA with Bonferroni correction for multiple comparisons. Dotted line represents the levels of neutral pH (a) and moderate buffering capacity (b). Comparison of changes in buffering capacity between OMJ and GC groups after 1 and 2 months of interventions (c, d). Stacked bars (c) represent percentage of participants with the same, improved, or worse buffering capacity as compared with their own baseline. Stacked bars (d) represent percentage of participants with low, moderate, and high buffering capacity at each time point. Asterisk (*) indicates p value < 0.05 by using Fisher’s exact test
Fig. 4
Fig. 4
Effect of artificial saliva on the quantity of Candida colonization in Candida carriers. Average logCFU (a) of Candida colonization in OMJ and GC groups at baseline and after 1 and 2 months of interventions. Stacked bars (b) represent percentage of Candida carriers with the same, increased, or decreased logCFU as compared with their own baseline
Fig. 5
Fig. 5
Effects of artificial saliva on the number of Candida species in Candida carriers. Stacked bar represents a percentage of participants with no Candida colonization (0 species) or colonized with 1, 2, 3, and 4 Candida species in OMJ and GC groups at 0, 1, and 2 months of interventions, and b percentage of participants with the increased, same, or decreased number of Candida species as compared with their own baseline in OMJ and GC groups at 1 month and 2 months of intervention. Asterisk, double asterisk, triple asterisk, and quadruple asterisk represent p value < 0.05, 0.01, 0.001, and 0.0001, respectively, obtained from Chi-square test
Fig. 6
Fig. 6
Effects of artificial saliva on Candida species. The prevalence of various Candida species detected in OMJ and GC groups at baseline and after 1 and 2 months of interventions is shown
Fig. 7
Fig. 7
Relationship of saliva properties and quantity of Candida colonization after artificial saliva use. Dot plot demonstrated correlation between Candida logCFU and salivary flow rate (a), Candida logCFU and saliva pH (b), and saliva pH and salivary flow rate (c) of Candida carriers at baseline and 1 and 2 months after intervention. r and a p value analyzed by Pearson correlation analysis shown in each plot. Gray-shaded box indicated a p value < 0.05

References

    1. Chambers MS, Garden AS, Kies MS, Martin JW. Radiation-induced xerostomia in patients with head and neck cancer: pathogenesis, impact on quality of life, and management. Head Neck. 2004;26(9):796–807. doi: 10.1002/hed.20045.
    1. Jensen SB, Vissink A, Limesand KH, Reyland ME (2019) Salivary gland hypofunction and xerostomia in head and neck radiation patients. J Natl Cancer Inst Monogr 2019(53). 10.1093/jncimonographs/lgz016
    1. Arrifin A, Heidari E, Burke M, Fenlon MR, Banerjee A. The effect of radiotherapy for treatment of head and neck cancer on oral flora and saliva. Oral Health Prev Dent. 2018;16(5):425–429.
    1. Tarapan S, Matangkasombut O, Trachootham D, Sattabanasuk V, Talungchit S, Paemuang W, Phonyiam T, Chokchaitam O, Mungkung OO, Lam-Ubol A. Oral Candida colonization in xerostomic postradiotherapy head and neck cancer patients. Oral Dis. 2019;25(7):1798–1808. doi: 10.1111/odi.13151.
    1. Epstein JB, Thariat J, Bensadoun RJ, Barasch A, Murphy BA, Kolnick L, Popplewell L, Maghami E. Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin. 2012;62(6):400–422. doi: 10.3322/caac.21157.
    1. Jham BC, da Silva Freire AR. Oral complications of radiotherapy in the head and neck. Rev Bras Otorrinolaringol. 2006;72(5):704–708. doi: 10.1590/S0034-72992006000500019.
    1. Karbach J, Walter C, Al-Nawas B. Evaluation of saliva flow rates, Candida colonization and susceptibility of Candida strains after head and neck radiation. Clin Oral Investig. 2012;16(4):1305–1312. doi: 10.1007/s00784-011-0612-1.
    1. Bensadoun RJ, Patton LL, Lalla RV, Epstein JB. Oropharyngeal candidiasis in head and neck cancer patients treated with radiation: update 2011. Support Care Cancer. 2011;19(6):737–744. doi: 10.1007/s00520-011-1154-4.
    1. Fanello S, Bouchara JP, Sauteron M, Delbos V, Parot E, Marot-Leblond A, Moalic E, Le Flohicc AM, Brangerd B. Predictive value of oral colonization by Candida yeasts for the onset of a nosocomial infection in elderly hospitalized patients. J Med Microbiol. 2006;55(Pt 2):223–228. doi: 10.1099/jmm.0.46155-0.
    1. Epstein JB, Pearsall NN, Truelove EL. Quantitative relationships between Candida albicans in saliva and the clinical status of human subjects. J Clin Microbiol. 1980;12(3):475–476. doi: 10.1128/JCM.12.3.475-476.1980.
    1. Azizi A, Rezaei M. Prevalence of Candida species in the oral cavity of patients undergoing head and neck radiotherapy. J Dent Res Dent Clin Dent Prospects. 2009;3(3):78–81. doi: 10.5681/joddd.2009.020.
    1. Thaweboon S, Thaweboon B, Srithavaj T, Choonharuangdej S. Oral colonization of Candida species in patients receiving radiotherapy in the head and neck area. Quintessence Int. 2008;39(2):e52–e57.
    1. Santiwongkarn P, Kachonboon S, Thanyasrisung P, Matangkasombut O. Prevalence of oral Candida carriage in Thai adolescents. J Investig Clin Dent. 2012;3(1):51–55. doi: 10.1111/j.2041-1626.2011.0089.x.
    1. Thanyasrisung P, Kesakomol P, Pipattanagovit P, Youngnak-Piboonratanakit P, Pitiphat W, Matangkasombut O. Oral Candida carriage and immune status in Thai human immunodeficiency virus-infected individuals. J Med Microbiol. 2014;63(Pt 5):753–759. doi: 10.1099/jmm.0.069773-0.
    1. Sadeghi G, Ebrahimi-Rad M, Mousavi SF, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Emergence of non-Candida albicans species: epidemiology, phylogeny and fluconazole susceptibility profile. J Mycol Med. 2018;28(1):51–58. doi: 10.1016/j.mycmed.2017.12.008.
    1. Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog. 2013;9(9):e1003550. doi: 10.1371/journal.ppat.1003550.
    1. Lysik D, Niemirowicz-Laskowska K, Bucki R, Tokajuk G, Mystkowska J (2019) Artificial saliva: challenges and future perspectives for the treatment of xerostomia. Int J Mol Sci 20(13). 10.3390/ijms20133199
    1. See L, Mohammadi M, Han PP, Mulligan R, Enciso R. Efficacy of saliva substitutes and stimulants in the treatment of dry mouth. Spec Care Dentist. 2019;39(3):287–297. doi: 10.1111/scd.12370.
    1. Dost F, Farah CS. Stimulating the discussion on saliva substitutes: a clinical perspective. Aust Dent J. 2013;58(1):11–17. doi: 10.1111/adj.12023.
    1. Oh DJ, Lee JY, Kim YK, Kho HS. Effects of carboxymethylcellulose (CMC)-based artificial saliva in patients with xerostomia. Int J Oral Maxillofac Surg. 2008;37(11):1027–1031. doi: 10.1016/j.ijom.2008.06.006.
    1. Assery MKA. Efficacy of artificial salivary substitutes in treatment of xerostomia: a systematic review. J Pharm Bioallied Sci. 2019;11(Suppl 1):S1–S12. doi: 10.4103/jpbs.JPBS_220_18.
    1. Skrinjar I, Vucicevic Boras V, Bakale I, Andabak Rogulj A, Brailo V, Vidovic Juras D, Alajbeg I, Vrdoljak DV. Comparison between three different saliva substitutes in patients with hyposalivation. Clin Oral Investig. 2015;19(3):753–757. doi: 10.1007/s00784-015-1405-8.
    1. Shahdad SA, Taylor C, Barclay SC, Steen IN, Preshaw PM. A double-blind, crossover study of Biotene Oralbalance and BioXtra systems as salivary substitutes in patients with post-radiotherapy xerostomia. Eur J Cancer Care (Engl) 2005;14(4):319–326. doi: 10.1111/j.1365-2354.2005.00587.x.
    1. Epstein JB, Emerton S, Le ND, Stevenson-Moore P. A double-blind crossover trial of Oral Balance gel and Biotene toothpaste versus placebo in patients with xerostomia following radiation therapy. Oral Oncol. 1999;35(2):132–137. doi: 10.1016/s1368-8375(98)00109-2.
    1. Dalodom S, Lam-Ubol A, Jeanmaneechotechai S, Takamfoo L, Intachai W, Duangchada K, Hongsachum B, Kanjanatiwat P, Vacharotayangul P, Trachootham D. Influence of oral moisturizing jelly as a saliva substitute for the relief of xerostomia in elderly patients with hypertension and diabetes mellitus. Geriatr Nurs. 2016;37(2):101–109. doi: 10.1016/j.gerinurse.2015.10.014.
    1. Nuchit S, Lam-Ubol A, Paemuang W, Talungchit S, Chokchaitam O, Mungkung OO, Pongcharoen T, Trachootham D. Alleviation of dry mouth by saliva substitutes improved swallowing ability and clinical nutritional status of post-radiotherapy head and neck cancer patients: a randomized controlled trial. Support Care Cancer. 2020;28(6):2817–2828. doi: 10.1007/s00520-019-05132-1.
    1. Ericson D, Bratthall D. Simplified method to estimate salivary buffer capacity. Scand J Dent Res. 1989;97:405–407.
    1. Mannarelli BM, Kurtzman CP. Rapid identification of Candida albicans and other human pathogenic yeasts by using short oligonucleotides in a PCR. J Clin Microbiol. 1998;36(6):1634–1641. doi: 10.1128/JCM.36.6.1634-1641.1998.
    1. Mirhendi H, Makimura K, Khoramizadeh M, Yamaguchi H. A one-enzyme PCR-RFLP assay for identification of six medically important Candida species. Nihon Ishinkin Gakkai Zasshi. 2006;47(3):225–229. doi: 10.3314/jjmm.47.225.
    1. Braam PM, Roesink JM, Raaijmakers CP, Busschers WB, Terhaard CH. Quality of life and salivary output in patients with head-and-neck cancer five years after radiotherapy. Radiat Oncol. 2007;2:3. doi: 10.1186/1748-717X-2-3.
    1. Parliament MB, Scrimger RA, Anderson SG, Kurien EC, Thompson HK, Field GC, Hanson J. Preservation of oral health-related quality of life and salivary flow rates after inverse-planned intensity- modulated radiotherapy (IMRT) for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2004;58(3):663–673. doi: 10.1016/S0360-3016(03)01571-2.
    1. Epstein JB, Villines DC, Singh M, Papas A. Management of dry mouth: assessment of oral symptoms after use of a polysaccharide-based oral rinse. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(1):76–83. doi: 10.1016/j.oooo.2016.09.008.
    1. Dirix P, Nuyts S, Vander Poorten V, Delaere P, Van den Bogaert W. Efficacy of the BioXtra dry mouth care system in the treatment of radiotherapy-induced xerostomia. Support Care Cancer. 2007;15(12):1429–1436. doi: 10.1007/s00520-006-0210-y.
    1. Rhodus NL, Bereuter J. Clinical evaluation of a commercially available oral moisturizer in relieving signs and symptoms of xerostomia in postirradiation head and neck cancer patients and patients with Sjogren’s syndrome. J Otolaryngol. 2000;29(1):28–34.
    1. Gookizadeh A, Emami H, Najafizadeh N, Roayaei M. Clinical evaluation of BIOXTRA in relieving signs and symptoms of dry mouth after head and neck radiotherapy of cancer patients at Seyed-al-Shohada Hospital, Isfahan, Iran. Adv Biomed Res. 2012;1:72. doi: 10.4103/2277-9175.102976.
    1. Takesh T, Ho J, Firmalino MV, Islip D, Anbarani A, Wilder-Smith P. Effects of a novel formulation on oral biofilm, pH buffering, and gingival health in patients with dry mouth. Int J Dent. 2018;2018:2748274–2748278. doi: 10.1155/2018/2748274.
    1. Gomez-Moreno G, Cabrera-Ayala M, Aguilar-Salvatierra A, Guardia J, Ramirez-Fernandez MP, Gonzalez-Jaranay M, Calvo-Guirado JL. Evaluation of the efficacy of a topical sialogogue spray containing malic acid 1% in elderly people with xerostomia: a double-blind, randomized clinical trial. Gerodontology. 2014;31(4):274–280. doi: 10.1111/ger.12034.
    1. Lapiedra RC, Gomez GE, Sanchez BP, Pereda AA, Turner MD. The effect of a combination saliva substitute for the management of xerostomia and hyposalivation. J Maxillofac Oral Surg. 2015;14(3):653–658. doi: 10.1007/s12663-015-0752-y.
    1. Karami Nogourani M, Janghorbani M, Kowsari Isfahan R, Hosseini Beheshti M. Effects of chewing different flavored gums on salivary flow rate and pH. Int J Dent. 2012;2012:569327–569324. doi: 10.1155/2012/569327.
    1. Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C, Miles EA, Miah AB, Newbold K, Tanay M, Adab F, Jefferies SJ, Scrase C, Yap BK, A’Hern RP, Sydenham MA, Emson M, Hall E, group Ptm Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12(2):127–136. doi: 10.1016/S1470-2045(10)70290-4.
    1. Torres SR, Peixoto CB, Caldas DM, Silva EB, Akiti T, Nucci M, Uzeda M. Relationship between salivary flow rates and Candida counts in subjects with xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93(2):149–154. doi: 10.1067/moe.2002.119738.
    1. Nadig SD, Ashwathappa DT, Manjunath M, Krishna S, Annaji AG, Shivaprakash PK. A relationship between salivary flow rates and Candida counts in patients with xerostomia. J Oral Maxillofac Pathol. 2017;21(2):316. doi: 10.4103/jomfp.JOMFP_231_16.
    1. Al-Attas SA, Amro SO. Candidal colonization, strain diversity, and antifungal susceptibility among adult diabetic patients. Ann Saudi Med. 2010;31(2):101–108. doi: 10.4103/0256-4947.60514.
    1. Balan P, Gogineni SB, N SK, Shetty V, Rangare AL, Castelino RL, K FA. Candida carriage rate and growth characteristics of saliva in diabetes mellitus patients: a case-control study. J Dent Res Dent Clin Dent Prospects. 2015;9(4):274–279. doi: 10.15171/joddd.2015.048.
    1. Jain M, Shah R, Chandolia B, Mathur A, Chauhan Y, Chawda J, Mosby S, Bhagalia S. The oral carriage of Candida in oral cancer patients of Indian origin undergoing radiotherapy and/or chemotherapy. J Clin Diagn Res. 2016;10(2):ZC17–ZC20.
    1. de Freitas EM, Nobre SAM, Pires MBO, Faria RVJ, Batista AUD, Bonan PRF. Oral Candida species in head and neck cancer patients treated by radiotherapy. Auris Nasus Larynx. 2013;40(4):400–404. doi: 10.1016/j.anl.2012.11.011.
    1. Pongsiriwet S, Iamaroon A, Sriburee P, Pattanaporn K, Krisanaprakornkit S. Oral colonization of Candida species in perinatally HIV-infected children in northern Thailand. J Oral Sci. 2004;46(2):101–105. doi: 10.2334/josnusd.46.101.
    1. Singh GK, Capoor MR, Naid D, B KT. Spectrum of fungal infection in head and neck cancer patients on chemoradiotherapy. J Egypt Natl Canc Inst. 2017;29(1):33–37. doi: 10.1016/j.jnci.2017.01.006.
    1. Barbe AG, Ludwar L, Hamacher S, Noack MJ. Efficacy of a newly developed mouth gel for xerostomia relief-a randomized double-blind trial. Oral Dis. 2019;25(6):1519–1529. doi: 10.1111/odi.13105.

Source: PubMed

3
Suscribir