Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes

Niels Grarup, Ida Moltke, Mette K Andersen, Maria Dalby, Kristoffer Vitting-Seerup, Timo Kern, Yuvaraj Mahendran, Emil Jørsboe, Christina V L Larsen, Inger K Dahl-Petersen, Arthur Gilly, Daniel Suveges, George Dedoussis, Eleftheria Zeggini, Oluf Pedersen, Robin Andersson, Peter Bjerregaard, Marit E Jørgensen, Anders Albrechtsen, Torben Hansen, Niels Grarup, Ida Moltke, Mette K Andersen, Maria Dalby, Kristoffer Vitting-Seerup, Timo Kern, Yuvaraj Mahendran, Emil Jørsboe, Christina V L Larsen, Inger K Dahl-Petersen, Arthur Gilly, Daniel Suveges, George Dedoussis, Eleftheria Zeggini, Oluf Pedersen, Robin Andersson, Peter Bjerregaard, Marit E Jørgensen, Anders Albrechtsen, Torben Hansen

Abstract

We have identified a variant in ADCY3 (encoding adenylate cyclase 3) associated with markedly increased risk of obesity and type 2 diabetes in the Greenlandic population. The variant disrupts a splice acceptor site, and carriers have decreased ADCY3 RNA expression. Additionally, we observe an enrichment of rare ADCY3 loss-of-function variants among individuals with type 2 diabetes in trans-ancestry cohorts. These findings provide new information on disease etiology relevant for future treatment strategies.

Conflict of interest statement

Competing Financial Interests Statement

The authors report no competing financial interests.

Figures

Figure 1. ADCY3 isoforms, observed loss-of-function variants…
Figure 1. ADCY3 isoforms, observed loss-of-function variants and functional consequences based on RNA sequencing of leukocytes from 17 Greenlandic individuals.
a. Schematic representation of ADCY3 displaying the three relevant transcript isoforms and their predicted functional consequences annotated to the left (“Coding” or “nonsense mediated decay (NMD) sensitive”). The exons that correspond to the protein domain, Guanylate cyclase, are shown as gray filled boxes, while the rest of the exons are shown as black filled boxes. The red square encapsulates the exons affected by the Greenlandic ADCY3 c.2433-1G>A variant. The locations of the identified loss-of-function variants in ADCY3in the Greenlandic and trans-ancestry cohorts are shown with arrows in red and black, respectively. Variants were annotated to canonical transcript ADCY3-201 (NM_004036) except c.1072-1G>A, which is annotated to alternative transcript ADCY3-202 (NM_001320613). b.ADCY3 Transcripts Per Million (TPM) normalized gene expression, stratified according to ADCY3 c.2433-1G>A variant genotype groups (WT, wild type; HE, heterozygous; and HO, homozygous).c.ADCY3 transcript isoform fractions for the three quantified isoforms, the canonical isoform, the novel exon skipping and intron retention splice version stratified according to ADCY3 c.2433-1G>A variant genotype groups. Number of individuals in each group in b and c are: WT: 7 GG carriers, HE: 6 GA carriers, and HO: 4 AA carriers. The lower and upper hinges of boxes in b and c correspond to the first and third quartiles of data, respectively, while the middle line is the median and the whiskers extends to the largest and smallest data points no further away than 1.5 times the interquartile range.

References

    1. Moltke I, et al. Nature. 2014;512:190–3.
    1. Pedersen CT, et al. Genetics. 2017;205:787–801.
    1. Speliotes EK, et al. Nat Genet. 2010;42:937–48.
    1. Warrington NM, et al. Int J Epidemiol. 2015;44:700–12.
    1. Lek M, et al. Nature. 2016;536:285–91.
    1. Fuchsberger C, et al. Nature. 2016;536:41–7.
    1. The Sigma Type Diabetes Consortium et al. JAMA. 2014;311:2305–14.
    1. Lohmueller KE, et al. Am J Hum Genet. 2013;93:1072–86.
    1. Laakso M, et al. J Lipid Res. 2017;58:481–493.
    1. Panoutsopoulou K, et al. Nat Commun. 2014;5:5345.
    1. Liu Y, et al. PLoS One. 2013;8:e66883.
    1. Vitting-Seerup K, Sandelin A. Mol Cancer Res. 2017;15:1206–1220.
    1. Xu TR, Yang Y, Ward R, Gao L, Liu Y. Cell Signal. 2013;25:2413–23.
    1. Yang H, et al. J Mol Endocrinol. 2016;57:R93–R108.
    1. Tong T, et al. Sci Rep. 2016;6:34179.
    1. Pitman JL, et al. PLoS One. 2014;9:e110226.
    1. Wang Z, et al. PLoS One. 2009;4:e6979.
    1. Chen X, et al. Biol Psychiatry. 2016;80:836–848.
    1. Vaisse C, Reiter JF, Berbari NF. Cold Spring Harb Perspect Biol. 2017;9
    1. Dupuis J, et al. Nat Genet. 2010;42:105–116.
    1. Tachmazidou I, et al. Am J Hum Genet. 2017;100:865–884.
    1. Bjerregaard P, et al. Int J Circumpolar Health. 2003;62(Suppl 1):3–79.
    1. Bjerregaard P. 2011 .
    1. Philipsen A, et al. PLoS One. 2015;10:e0123062.
    1. Jørgensen ME, et al. Diabetes Care. 2013;36:2988–94.
    1. Matthews DR, et al. Diabetologia. 1985;28:412–9.
    1. Gutt M, et al. Diabetes Res Clin Pract. 2000;47:177–84.
    1. World Health Organization Study Group. World Health Organization; Geneva: 1999.
    1. Andersen MK, et al. PLoS Genet. 2016;12:e1006119.
    1. Zhou X, Stephens M. Nat Genet. 2012;44:821–4.
    1. Alexander DH, Novembre J, Lange K. Genome Res. 2009;19:1655–64.
    1. Moltke I, Albrechtsen A. Bioinformatics. 2014;30:1027–28.
    1. Bolger AM, Lohse M, Usadel B. Bioinformatics. 2014;30:2114–20.
    1. Kim D, Langmead B, Salzberg SL. Nat Methods. 2015;12:357–60.
    1. Harrow J, et al. Genome Res. 2012;22:1760–74.
    1. Katz Y, et al. Bioinformatics. 2015;31:2400–2.
    1. Robinson JT, et al. Nat Biotechnol. 2011;29:24–6.
    1. Liao Y, Smyth GK, Shi W. Bioinformatics. 2014;30:923–30.
    1. Trapnell C, et al. Nat Biotechnol. 2010;28:511–5.
    1. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Nat Methods. 2017;14:417–419.
    1. Punta M, et al. Nucleic Acids Res. 2012;40:D290–301.

Source: PubMed

3
Suscribir