Risk factors, host response and outcome of hypothermic sepsis

Maryse A Wiewel, Matthew B Harmon, Lonneke A van Vught, Brendon P Scicluna, Arie J Hoogendijk, Janneke Horn, Aeilko H Zwinderman, Olaf L Cremer, Marc J Bonten, Marcus J Schultz, Tom van der Poll, Nicole P Juffermans, W Joost Wiersinga, Maryse A Wiewel, Matthew B Harmon, Lonneke A van Vught, Brendon P Scicluna, Arie J Hoogendijk, Janneke Horn, Aeilko H Zwinderman, Olaf L Cremer, Marc J Bonten, Marcus J Schultz, Tom van der Poll, Nicole P Juffermans, W Joost Wiersinga

Abstract

Background: Hypothermia is associated with adverse outcome in patients with sepsis. The objective of this study was to characterize the host immune response in patients with hypothermic sepsis in order to determine if an excessive anti-inflammatory response could explain immunosuppression and adverse outcome. Markers of endothelial activation and integrity were also measured to explore potential alternative mechanisms of hypothermia. Finally we studied risk factors for hypothermia in an attempt to find new clues to the etiology of hypothermia in sepsis.

Methods: Consecutive patients diagnosed with sepsis within 24 hours after admission to ICUs in two tertiary hospitals in the Netherlands were included in the study (n = 525). Hypothermia was defined as body temperature below 36 °C in the first 24 h of ICU admission.

Results: Hypothermia was identified in 186 patients and was independently associated with mortality. Levels of proinflammatory and anti-inflammatory cytokines were not different between groups. Hypothermia was also not associated with an altered response to ex vivo stimulation with lipopolysaccharide in a subset of 15 patients. Risk factors for hypothermia included low body mass index, hypertension and chronic cardiovascular insufficiency. Levels of the endothelial activation marker fractalkine were increased during the first 4 days of ICU stay.

Conclusions: Hypothermia during sepsis is independently associated with mortality, which cannot be attributed to alterations in the host immune responses that were measured in this study. Given that risk factors for hypothermic sepsis are mainly cardiovascular and that the endothelial activation marker fractalkine increased in hypothermia, these findings may suggest that vascular dysfunction plays a role in hypothermic sepsis.

Trial registration: ClinicalTrials.gov NCT01905033.

Keywords: Fractalkine; Host response; Hypothermia; Mortality; Risk factors; Sepsis.

Figures

Fig. 1
Fig. 1
Survival curve in patients with and without hypothermia during the first 24 h of ICU admission. Kaplan–Meier plot of survival time up to 90 days after ICU admission. ***P < 0.001
Fig. 2
Fig. 2
Plasma cytokine levels in patients with sepsis, stratified according to the presence of hypothermia. Box and whisker diagrams depict the median and lower quartile, upper quartile and respective 1.5 IQR as whiskers. Dashed lines represent median levels in healthy volunteers. Differences between patient groups were not significant
Fig. 3
Fig. 3
Whole blood leukocyte responsiveness to lipopolysaccharide (LPS) stratified according to the presence of hypothermia. Responsiveness of whole blood leukocytes to LPS was reduced compared to healthy subjects (n = 18), but was not different between hypothermic (n = 5) and nonhypothermic (n = 10) patients with sepsis. Box and whisker diagrams depict the median and lower quartile, upper quartile, and their respective 1.5 IQR as whiskers. *P < 0.05, **P <0.01
Fig. 4
Fig. 4
Endothelial cell activation in patients with sepsis, stratified according to the presence of hypothermia. Box-and-whisker diagrams depict the median and lower quartile, upper quartile and their respective 1.5 IQR as whiskers. Dashed lines represent the median in 27 healthy volunteers. ICAM-1 intercellular adhesion molecule-1. Note: soluble ICAM-1 is also derived from leukocytes. ***P < 0.001, *P < 0.05

References

    1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51. doi: 10.1056/NEJMra1208623.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29(4):530–8. doi: 10.1007/s00134-003-1662-x.
    1. Clemmer TP, Fisher CJ, Jr, Bone RC, Slotman GJ, Metz CA, Thomas FO. Hypothermia in the sepsis syndrome and clinical outcome. The Methylprednisolone Severe Sepsis Study Group. Crit Care Med. 1992;20(10):1395–401. doi: 10.1097/00003246-199210000-00006.
    1. Kushimoto S, Gando S, Saitoh D, Mayumi T, Ogura H, Fujishima S, Araki T, Ikeda H, Kotani J, Miki Y, et al. The impact of body temperature abnormalities on the disease severity and outcome in patients with severe sepsis: an analysis from a multicenter, prospective survey of severe sepsis. Crit Care. 2013;17(6):R271. doi: 10.1186/cc13106.
    1. Marik PE, Zaloga GP. Hypothermia and cytokines in septic shock. Norasept II Study Investigators. North American study of the safety and efficacy of murine monoclonal antibody to tumor necrosis factor for the treatment of septic shock. Intensive Care Med. 2000;26(6):716–21. doi: 10.1007/s001340051237.
    1. Arons MM, Wheeler AP, Bernard GR, Christman BW, Russell JA, Schein R, Summer WR, Steinberg KP, Fulkerson W, Wright P, et al. Effects of ibuprofen on the physiology and survival of hypothermic sepsis. Ibuprofen in Sepsis Study Group. Crit Care Med. 1999;27(4):699–707. doi: 10.1097/00003246-199904000-00020.
    1. Pajkrt D, Camoglio L, Tiel-van Buul MC, de Bruin K, Cutler DL, Affrime MB, Rikken G, van der Poll T, ten Cate JW, van Deventer SJ. Attenuation of proinflammatory response by recombinant human IL-10 in human endotoxemia: effect of timing of recombinant human IL-10 administration. J Immunol. 1997;158(8):3971–7.
    1. Leon LR, Kozak W, Rudolph K, Kluger MJ. An antipyretic role for interleukin-10 in LPS fever in mice. Am J Physiol. 1999;276(1 Pt 2):R81–9.
    1. Leon LR. Hypothermia in systemic inflammation: role of cytokines. Front Biosci. 2004;9:1877–88. doi: 10.2741/1381.
    1. Drewry AM, Fuller BM, Skrupky LP, Hotchkiss RS. The presence of hypothermia within 24 hours of sepsis diagnosis predicts persistent lymphopenia. Crit Care Med. 2015.
    1. Mallet ML. Pathophysiology of accidental hypothermia. QJM. 2002;95(12):775–85. doi: 10.1093/qjmed/95.12.775.
    1. Romanovsky AA, Shido O, Sakurada S, Sugimoto N, Nagasaka T. Endotoxin shock: thermoregulatory mechanisms. Am J Physiol. 1996;270(4 Pt 2):R693–703.
    1. Scicluna BP, Klein Klouwenberg PM, van Vught LA, Wiewel MA, Ong DS, Zwinderman AH, Franitza M, Toliat MR, Nurnberg P, Hoogendijk AJ, et al. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am J Respir Crit Care Med. 2015;192(7):826–35. doi: 10.1164/rccm.201502-0355OC.
    1. Klein Klouwenberg PM, Ong DS, Bos LD, de Beer FM, van Hooijdonk RT, Huson MA, Straat M, van Vught LA, Wieske L, Horn J, et al. Interobserver agreement of Centers for Disease Control and Prevention criteria for classifying infections in critically ill patients. Crit Care Med. 2013;41(10):2373–8. doi: 10.1097/CCM.0b013e3182923712.
    1. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16(3):128–40. doi: 10.1016/0196-6553(88)90053-3.
    1. Calandra T, Cohen J. International Sepsis Forum definition of infection in the ICUCC. The International Sepsis Forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med. 2005;33(7):1538–48. doi: 10.1097/01.CCM.0000168253.91200.83.
    1. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12. doi: 10.1186/cc2872.
    1. Peres Bota D, Lopes Ferreira F, Melot C, Vincent JL. Body temperature alterations in the critically ill. Intensive Care Med. 2004;30(5):811–6. doi: 10.1007/s00134-004-2166-z.
    1. van Vught LA, Wiewel MA, Hoogendijk AJ, Scicluna BP, Belkasim-Bohoudi H, Horn J, Schultz MJ, van der Poll T. Reduced responsiveness of blood leukocytes to lipopolysaccharide does not predict nosocomial infections in critically ill patients. Shock. 2015;44(2):110–4. doi: 10.1097/SHK.0000000000000391.
    1. Tiruvoipati R, Ong K, Gangopadhyay H, Arora S, Carney I, Botha J. Hypothermia predicts mortality in critically ill elderly patients with sepsis. BMC Geriatr. 2010;10:70. doi: 10.1186/1471-2318-10-70.
    1. Wiersinga WJ, van't Veer C, van den Pangaart PS, Dondorp AM, Day NP, Peacock SJ, van der Poll T. Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis) Crit Care Med. 2009;37(2):569–76. doi: 10.1097/CCM.0b013e318194b1bf.
    1. Laupland KB, Zahar JR, Adrie C, Minet C, Vesin A, Goldgran-Toledano D, Azoulay E, Garrouste-Orgeas M, Cohen Y, Schwebel C, et al. Severe hypothermia increases the risk for intensive care unit-acquired infection. Clin Infect Dis. 2012;54(8):1064–70. doi: 10.1093/cid/cir1033.
    1. Nerad JL, Griffiths JK, Van der Meer JW, Endres S, Poutsiaka DD, Keusch GT, Bennish M, Salam MA, Dinarello CA, Cannon JG. Interleukin-1 beta (IL-1 beta), IL-1 receptor antagonist, and TNF alpha production in whole blood. J Leukoc Biol. 1992;52(6):687–92.
    1. Sakr Y, Alhussami I, Nanchal R, Wunderink RG, Pellis T, Wittebole X, Martin-Loeches I, Francois B, Leone M, Vincent JL, et al. being overweight is associated with greater survival in ICU patients: results from the Intensive Care Over Nations Audit. Crit Care Med. 2015;43(12):2623–32. doi: 10.1097/CCM.0000000000001310.
    1. Steiner AA, Romanovsky AA. Leptin: at the crossroads of energy balance and systemic inflammation. Prog Lipid Res. 2007;46(2):89–107. doi: 10.1016/j.plipres.2006.11.001.
    1. Saper CB. Neurobiological basis of fever. Ann NY Acad Sci. 1998;856:90–4. doi: 10.1111/j.1749-6632.1998.tb08317.x.
    1. Hoogendijk AJ, Wiewel MA, van Vught LA, Scicluna BP, Belkasim-Bohoudi H, Horn J, Zwinderman AH, Klein Klouwenberg PM, Cremer OL, Bonten MJ, et al. Plasma fractalkine is a sustained marker of disease severity and outcome in sepsis patients. Crit Care. 2015;19(1):412. doi: 10.1186/s13054-015-1125-0.
    1. Sung MJ, Kim W, Ahn SY, Cho CH, Koh GY, Moon SO, Kim DH, Lee S, Kang KP, Jang KY, et al. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circ Res. 2005;97(9):880–90. doi: 10.1161/01.RES.0000186522.89544.4D.

Source: PubMed

3
Suscribir