Association between multi-site atherosclerotic plaques and systemic arteriosclerosis: results from the BEST study (Beijing Vascular Disease Patients Evaluation Study)

Huan Liu, Jinbo Liu, Wei Huang, Hongwei Zhao, Na Zhao, Hongyu Wang, Huan Liu, Jinbo Liu, Wei Huang, Hongwei Zhao, Na Zhao, Hongyu Wang

Abstract

Background: Arteriosclerosis can be reflected in various aspect of the artery, including atherosclerotic plaque formation or stiffening on the arterial wall. Both arteriosclerosis and atherosclerosis are important and closely associated with cardiovascular disease (CVD). The aim of the study was to evaluate the association between systemic arteriosclerosis and multi-site atherosclerotic plaques.

Methods: The study was designed as an observational cross-sectional study. A total of 1178 participants (mean age 67.4 years; 52.2% male) enrolled into the observational study from 2010 to 2017. Systemic arteriosclerosis was assessed by carotid femoral artery pulse wave velocity (CF-PWV) and multi-site atherosclerotic plaques (MAP, > = 2 of the below sites) were reflected in the carotid or subclavian artery, abdominal aorta and lower extremities arteries using ultrasound equipment. The associations were assessed by multivariable logistic regression.

Results: The prevalence of CF-PWV > 12 m/s and MAP were 40.2% and 74.4%. Atherosclerotic plaques in 3 sites were more common in male compared with that in female (48.9% versus 36.9%, p < 0.05). All CVD factors were worse in participants with MAP than that with <=1 site. Participants with CF-PWV > 12 m/s corresponded to a mean 82% probability of MAP with age and sex-adjusted. Patients with peripheral artery disease showed the highest odds ratio (OR) (3.88) for MAP, followed by smoking (2.485), CF-PWV > 12 m/s (2.25), dyslipidemia (1.89), male (1.84), stroke (1.64), hypoglycemic agents (1.56) and age (1.09) (all p < 0.001).

Conclusions: MAP was highly prevalent in this cohort, with male showing a higher prevalence than female. Higher systemic arteriosclerosis was independently associated with MAP, which indicating the supplementary value of arteriosclerosis for the earlier identification and intervention on MAP.

Trial registration: Clinical Trial, URL: http://www.clinicaltrials.gov . Unique identifier: NCT02569268 .

Keywords: Arteriosclerosis; Atherosclerosis; Atherosclerotic plaque; CF-PWV; Carotid femoral artery pulse wave velocity.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a Presence of plaque in carotid artery. b Presence of plaque in subclavian artery. c Presence of plaque in abdominal aorta. d Presence of plaque in femoral artery
Fig. 2
Fig. 2
a to d Prevalence and Distribution of Atherosclerotic Plaque in different vascular sites (in each single or combined vascular site) by ultrasonography, comparing male with female. Vascular sites examined were the right and left carotids and subclavian artery, the abdominal aorta, and the right and left lower extremities arteries (presence of plaque). a The distribution of the number of plaque site detected by vascular ultrasound, including presence of plaque in 0,1,2,3 of carotid artery, abdominal aorta, femoral artery, comparing male with female. b The distribution of plaque site in only one of carotid artery, femoral artery and abdominal aorta detected by vascular ultrasound, comparing male with female. c The distribution of plaque site in two of carotid artery, femoral artery and abdominal aorta detected by vascular ultrasound, comparing male with female. d The individual distribution of anyone territory plaque in carotid artery, femoral artery and abdominal aorta detected by vascular ultrasound, comparing male with female
Fig. 3
Fig. 3
Age and sex-adjusted mean of predicted probability of multi-site atherosclerotic plaques (> = 2 sites) in each CF-PWV group, analyzed by age and sex-adjusted covariance analysis

References

    1. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, Heffernan KS, Lakatta EG, McEniery CM, Mitchell GF, Najjar SS, Nichols WW, Urbina EM. Weber T; American Heart Association Council on hypertension. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66(3):698–722. doi: 10.1161/HYP.0000000000000033.
    1. ESH/ESC Task Force for the Management of Arterial Hypertension 2013 practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC task force for the Management of Arterial Hypertension. J Hypertens. 2013;31(10):1925–1938. doi: 10.1097/HJH.0b013e328364ca4c.
    1. Wang H. Guideline for the application of vascular health evaluation system in China (third report of 2018) Nat Med J China. 2018;98(37):2955–2967.
    1. Baber U, Mehran R, Sartori S, Schoos MM, Sillesen H, Muntendam P, Garcia MJ, Gregson J, Pocock S, Falk E, Fuster V. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol. 2015;65(11):1065–1074. doi: 10.1016/j.jacc.2015.01.017.
    1. Schiano V, Sirico G, Giugliano G, Laurenzano E, Brevetti L, Perrino C, Brevetti G, Esposito G. Femoral plaque echogenicity and cardiovascular risk in claudicants. JACC Cardiovasc Imaging. 2012;5(4):348–357. doi: 10.1016/j.jcmg.2012.01.011.
    1. Song P, Xia W, Zhu Y, Wang M, Chang X, Jin S, Wang J, An L. Prevalence of carotid atherosclerosis and carotid plaque in Chinese adults: a systematic review and meta-regression analysis. Atherosclerosis. 2018;276:67–73. doi: 10.1016/j.atherosclerosis.2018.07.020.
    1. Liu H, Liu J, Zhao H, Li L, Shang G, Zhou Y, Wang H. The design and rationale of the Beijing Vascular Disease Patients Evaluation Study (BEST study) Contemp Clin Trials Commun. 2017;7:18–22. doi: 10.1016/j.conctc.2017.05.004.
    1. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R, Jaff M, Kownator S, Naqvi T, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E, Woo KS. Mannheim carotid intima-media thickness and plaque consensus (2004–2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis. 2012;34(4):290–296. doi: 10.1159/000343145.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. European network for non-invasive investigation of large arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254.
    1. Gacoń J, Przewłocki T, Podolec J, Badacz R, Pieniążek P, Mleczko S, Ryniewicz W, Żmudka K, Kabłak-Ziembicka A. Prospective study on the prognostic value of repeated carotid intima-media thickness assessment in patients with coronary and extra coronary steno-occlusive arterial disease. Pol Arch Intern Med. 2019;129(1):12–21.
    1. Lambert MA, Weir-McCall JR, Salsano M, Gandy SJ, Levin D, Cavin I, Littleford R, MacFarlane JA, Matthew SZ, Nicholas RS, Struthers AD, Sullivan F, Henderson SA, White RD, Belch JJF, Houston JG. Prevalence and distribution of atherosclerosis in a low- to intermediate-risk population: assessment with whole-body MR angiography. Radiology. 2018;287(3):795–804. doi: 10.1148/radiol.2018171609.
    1. Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, Bl I, López-Melgar B, Laclaustra M, Oliva B, Mocoroa A, Mendiguren J, Martínez de Vega V, García L, Molina J, Sánchez-González J, Guzmán G, Alonso-Farto JC, Guallar E, Civeira F, Sillesen H, Pocock S, Ordovás JM, Sanz G, Jiménez-Borreguero LJ, Fuster V. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation. 2015;131(24):2104–2113. doi: 10.1161/CIRCULATIONAHA.114.014310.
    1. López-Melgar B, Fernández-Friera L, Oliva B, García-Ruiz JM, Peñalvo JL, Gómez-Talavera S, Sánchez-González J, Mendiguren JM, Ibáñez B, Fernández-Ortiz A, Sanz J, Fuster V. Subclinical atherosclerosis burden by 3D ultrasound in mid-life: the PESA study. J Am Coll Cardiol. 2017;70(3):301–313. doi: 10.1016/j.jacc.2017.05.033.
    1. Wong ND, Lopez VA, Allison M, Detrano RC, Blumenthal RS, Folsom AR, Ouyang P, Criqui MH. Abdominal aortic calcium and multi-site atherosclerosis: the multiethnic study of atherosclerosis. Atherosclerosis. 2011;214(2):436–441. doi: 10.1016/j.atherosclerosis.2010.09.011.
    1. Ihle-Hansen H, Vigen T, Ihle-Hansen H, Rønning OM, Berge T, Thommessen B, Lyngbakken MN, Orstad EB, Enger S, Nygård S, Røsjø H, Tveit A. Prevalence of Carotid Plaque in a 63- to 65-Year-Old Norwegian Cohort From the General Population: The ACE (Akershus Cardiac Examination) 1950 Study. J Am Heart Assoc. 2018;7(10) pii: e008562. 10.1161/JAHA.118.008562.
    1. Sillesen H, Muntendam P, Adourian A, Entrekin R, Garcia M, Falk E, Fuster V. Carotid plaque burden as a measure of subclinical atherosclerosis: comparison with other tests for subclinical arterial disease in the high risk plaque BioImage study. JACC Cardiovasc Imaging. 2012;5(7):681–689. doi: 10.1016/j.jcmg.2012.03.013.
    1. Bian L, Xia L, Wang Y, Jiang J, Zhang Y, Li D, Li W, He Y. Risk factors of subclinical atherosclerosis and plaque burden in high risk individuals: results from a community-based study. Front Physiol. 2018;9:739. doi: 10.3389/fphys.2018.00739.
    1. Kröger K, Lehmann N, Rappaport L, Perrey M, Sorokin A, Budde T, Heusch G, Jöckel KH, Thompson PD, Erbel R, Möhlenkamp S. Carotid and peripheral atherosclerosis in male marathon runners. Med Sci Sports Exerc. 2011;43(7):1142–1147. doi: 10.1249/MSS.0b013e3182098a51.
    1. Karim R, Hodis HN, Detrano R, Liu CR, Liu CH, Mack WJ. Relation of Framingham risk score to subclinical atherosclerosis evaluated across three arterial sites. Am J Cardiol. 2008;102(7):825–830. doi: 10.1016/j.amjcard.2008.05.039.

Source: PubMed

3
Suscribir