Gender Difference of the Relationship between Arterial Stiffness and Blood Pressure Variability in Participants in Prehypertension

Yang Lan, Huan Liu, Jinbo Liu, Hongwei Zhao, Hongyu Wang, Yang Lan, Huan Liu, Jinbo Liu, Hongwei Zhao, Hongyu Wang

Abstract

Aim. The association of pressure load with elasticity in vascular system has not been studied fully. We proposed a hypothesis whether gender could modify the association of blood pressure variability (BPV) and arterial stiffness assessed by carotid-femoral pulse wave velocity (CF-PWV) in prehypertensive patients. Methods. 24h ambulatory blood pressure monitoring (24h-ABPM) and CF-PWV were measured in 723 participants with prehypertension. Univariate and multivariate regression analyses of these clinical and biological parameters were performed in total population, male and female. Results. A total of 723 participants (mean age 59.76 ± 12.37years, male 329 and female 394) were enrolled into the study. Compared with female, body mass index (BMI), fasting plasma glucose (FPG), uric acid (UA), and homocysteine (HCY) were significantly higher (all p < 0.05). Arterial stiffness (CF-PWV, male versus female, 10.89 ± 2.50 versus 10.33 ± 2.13 m/s, p=0.004) and BPVs (male versus female, 24 h SBPV 13.2 ± 5.11 versus 13.03 ± 5.20; 24 h DBPV 10.34 ± 3.87 versus 9.64 ± 3.59; N SBPV 11.90 ± 6.60 versus 10.94 ± 4.79; N DBPV 9.64 ± 5.87 versus 8.20 ± 4.48, all p<0.05) were higher in male. Multivariable linear regression analysis showed that 24 h BPV were linearly and positively related to CF-PWV in total population (24h SBPV, B=0.033; 24 h DBPV, B=0.035, both P<0.05) and female (24h SBPV, B=0.041; 24h DBPV, B=0.067, both P<0.05) independent of traditional risk factors and medications. Conclusion. BPV was independently associated with arterial stiffness in total population and the relation was modified by gender. 24 h BPVs in prehypertensive patients were useful to identify the early arterial stiffness. Clinical Trials Registration. This trial was registered with Clinical Trials.gov Identifier: NCT02569268.

Figures

Figure 1
Figure 1
Comparison of linear regression coefficients between CF-PWV and BPVs in male and female.

References

    1. Mancia G., Fagard R., Narkiewicz K., et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) Journal of Hypertension. 2013;31(7):1281–1357. doi: 10.1097/.
    1. Pirbhulal S., Zhang H., Wu W., et al. Heartbeats based biometric random binary sequences generation to secure wireless body sensor networks. IEEE Transactions on Biomedical Engineering. 2018;65(12):2751–2759. doi: 10.1109/TBME.2018.2815155.
    1. Mancia G., Ferrari A., Gregorini L., et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circulation Research. 1983;53(1):96–104. doi: 10.1161/01.RES.53.1.96.
    1. Olesen T. B., Stidsen J. V., Blicher M. K., et al. Impact of age and target-organ damage on prognostic value of 24-hour ambulatory blood pressure. Hypertension. 2017;70(5):1034–1041. doi: 10.1161/HYPERTENSIONAHA.117.09173.
    1. Wei F., Li Y., Zhang L., et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated chinese. Hypertension. 2014;63(4):790–796. doi: 10.1161/HYPERTENSIONAHA.113.02681.
    1. Wei F., Li Y., Zhang L., et al. Association of target organ damage with 24-hour systolic and diastolic blood pressure levels and hypertension subtypes in untreated chinese. Hypertension. 2014;63(2):222–228. doi: 10.1161/HYPERTENSIONAHA.113.01940.
    1. Schillaci G., Bilo G., Pucci G., et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60(2):369–377. doi: 10.1161/HYPERTENSIONAHA.112.197491.
    1. Tatasciore A., Renda G., Zimarino M., et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2007;50(2):325–332. doi: 10.1161/hypertensionaha.107.090084.
    1. Mena L. J., Felix V. G., Melgarejo J. D., Maestre G. E. 24-Hour blood pressure variability assessed by average real variability: A systematic review and meta-analysis. Journal of the American Heart Association. 2017;6(10)
    1. Salles G. F., Reboldi G., Fagard R. H., et al. Prognostic effect of the nocturnal blood pressure fall in hypertensive patients. Hypertension. 2016;67(4):693–700. doi: 10.1161/HYPERTENSIONAHA.115.06981.
    1. Parati G., Ochoa J. E., Lombardi C., Bilo G. Blood pressure variability: assessment, predictive value, and potential as a therapeutic target. Current Hypertension Reports. 2015;17(4):p. 537. doi: 10.1007/s11906-014-0510-4.
    1. Ntineri A., Kollias A., Zeniodi M., et al. 3B.02: 24-hour ambulatory central blood pressure variability and target-organ damage in adolescents and young adults. Journal of Hypertension. 2015;33(Supplement 1):p. e34. doi: 10.1097/01.hjh.0000467439.23117.38.
    1. Muntner P., Shimbo D., Tonelli M., Reynolds K., Arnett D. K., Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57(2):160–166. doi: 10.1161/HYPERTENSIONAHA.110.162255.
    1. Lewington S., Clarke R., Qizilbash N., Peto R., Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. The Lancet. 2002;360(9349):1903–1913. doi: 10.1016/S0140-6736(02)11911-8.
    1. Goff D. C., Lloyd-Jones D. M., Bennett G., et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. Journal of the American College of Cardiology. 2014;63(25):2935–2959. doi: 10.1016/j.jacc.2013.11.005.
    1. van Sloten T. T., Schram M. T., van den Hurk K., et al. Local stiffness of the carotid and femoral artery is associated with incident cardiovascular events and all-cause mortality: the hoorn study. Journal of the American College of Cardiology. 2014;63(17):1739–1747. doi: 10.1016/j.jacc.2013.12.041.
    1. Wu S., Chen D., Zeng X., et al. Arterial stiffness is associated with target organ damage in subjects with pre-hypertension. Archives of Medical Science. 2018;14:1374–1380. doi: 10.5114/aoms.2017.69240.
    1. Boggia J., Thijs L., Hansen T. W., et al. Ambulatory blood pressure monitoring in 9357 subjects from 11 populations highlights missed opportunities for cardiovascular prevention in women. Hypertension. 2011;57(3):397–405.
    1. Peters R., Wells F., Bulpitt C., Beckett N. Impact of transiently elevated diastolic pressure on cause of death. Journal of Hypertension. 2013;31(1):71–76. doi: 10.1097/HJH.0b013e32835a4dd8.
    1. Fischer D.-C., Schreiver C., Heimhalt M., Noerenberg A., Haffner D. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. Journal of Hypertension. 2012;30(11):2159–2167. doi: 10.1097/hjh.0b013e3283582217.
    1. Wei X., Fang X., Ren L., et al. The effect of baroreflex function on blood pressure variability. International Journal of Clinical Medicine. 2013;4(9):378–383. doi: 10.4236/ijcm.2013.49068.
    1. Tian X., Xiong H., Wu D., et al. Age and sex-specific relationships between blood pressure variability and carotid intima-media thickness. Australasian Physical Engineering Sciences in Medicine. 2016;39(4):967–76. doi: 10.1007/s13246-015-0361-6.
    1. Rothwell P. M., Howard S. C., Dolan E., et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. The Lancet. 2010;375(9718):895–905. doi: 10.1016/S0140-6736(10)60308-X.
    1. Zhou T. L., Henry R. M. A., Stehouwer C. D. A., et al. Blood pressure variability, arterial stiffness, and arterial remodeling. Hypertension. 2018;72(4):1002–1010.
    1. Ohkuma T., Woodward M., Jun M., et al. Prognostic value of variability in systolic blood pressure related to vascular events and premature death in type 2 diabetes mellitus. Hypertension. 2017;70(2):461–468. doi: 10.1161/HYPERTENSIONAHA.117.09359.
    1. Tedla Y. G., Yano Y., Carnethon M., Greenland P. Association between long-term blood pressure variability and 10-year progression in arterial stiffness: the multiethnic study of atherosclerosis. Hypertension. 2017;69(1):118–127. doi: 10.1161/HYPERTENSIONAHA.116.08427.
    1. García-García Á., García-Ortiz L., Recio-Rodríguez J. I., et al. Relationship of 24-h blood pressure variability with vascular structure and function in hypertensive patients. Blood Pressure Monitoring. 2013;18(2):101–106. doi: 10.1097/MBP.0b013e32835ebc58.
    1. Schutte R., Thijs L., Liu Y., et al. Within-subject blood pressure level—not variability—predicts fatal and nonfatal outcomes in a general population. Hypertension. 2012;60(5):1138–1147. doi: 10.1161/HYPERTENSIONAHA.112.202143.
    1. Doumas M., Papademetriou V., Faselis C., Kokkinos P. Gender differences in hypertension: myths and reality. Current Hypertension Reports. 2013;15(4):321–330. doi: 10.1007/s11906-013-0359-y.
    1. Orshal J. M., Khalil R. A. Gender, sex hormones, and vascular tone. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2004;286(2):R233–R249. doi: 10.1152/ajpregu.00338.2003.
    1. Wang L., Szklo M., Folsom A. R., Cook N. R., Gapstur S. M., Ouyang P. Endogenous sex hormones, blood pressure change, and risk of hypertension in postmenopausal women: the multi-ethnic study of atherosclerosis. Atherosclerosis. 2012;224(1):228–234. doi: 10.1016/j.atherosclerosis.2012.07.005.
    1. Yu W.-C., Chuang S.-Y., Lin Y.-P., Chen C.-H. Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. Journal of Human Hypertension. 2008;22(1):24–31. doi: 10.1038/sj.jhh.1002259.
    1. Zaniqueli D., Alvim R. O., Luiz S. G., Oliosa P. R., de Sá Cunha R., Mill J. G. Ethnicity and arterial stiffness in children and adolescents from a Brazilian population. Journal of Hypertension. 2017;35(11):2257–2261. doi: 10.1097/HJH.0000000000001444.
    1. Boardman H., Lewandowski A. J., Lazdam M., et al. Aortic stiffness and blood pressure variability in young people: a multimodality investigation of central and peripheral vasculature. Journal of Hypertension. 2017;35(3):513–522. doi: 10.1097/HJH.0000000000001192.
    1. Cheng S., Xanthakis V., Sullivan L. M., Vasan R. S. Blood pressure tracking over the adult life course: patterns and correlates in the Framingham heart study. Hypertension. 2012;60(6):1393–1399. doi: 10.1161/HYPERTENSIONAHA.112.201780.
    1. Benetos A., Thomas F., Joly L., et al. Pulse pressure amplification: a mechanical biomarker of cardiovascular risk. Journal of the American College of Cardiology. 2010;55(10):1032–1037. doi: 10.1016/j.jacc.2009.09.061.
    1. Regnault V., Thomas F., Safar M. E., et al. Sex difference in cardiovascular risk: role of pulse pressure amplification. Journal of the American College of Cardiology. 2012;59(20):1771–1777. doi: 10.1016/j.jacc.2012.01.044.

Source: PubMed

3
Suscribir