Newborn Incubators Do Not Protect from High Noise Levels in the Neonatal Intensive Care Unit and Are Relevant Noise Sources by Themselves

Tanja Restin, Mikael Gaspar, Dirk Bassler, Vartan Kurtcuoglu, Felix Scholkmann, Friederike Barbara Haslbeck, Tanja Restin, Mikael Gaspar, Dirk Bassler, Vartan Kurtcuoglu, Felix Scholkmann, Friederike Barbara Haslbeck

Abstract

Background: While meaningful sound exposure has been shown to be important for newborn development, an excess of noise can delay the proper development of the auditory cortex.

Aim: The aim of this study was to assess the acoustic environment of a preterm baby in an incubator on a newborn intensive care unit (NICU).

Methods: An empty but running incubator (Giraffe Omnibed, GE Healthcare) was used to evaluate the incubator frequency response with 60 measurements. In addition, a full day and night period outside and inside the incubator at the NICU of the University Hospital Zurich was acoustically analyzed.

Results: The fan construction inside the incubator generates noise in the frequency range of 1.3-1.5 kHz with a weighted sound pressure level (SPL) of 40.5 dB(A). The construction of the incubator narrows the transmitted frequency spectrum of sound entering the incubator to lower frequencies, but it does not attenuate transient noises such as alarms or opening and closing of cabinet doors substantially. Alarms, as generated by the monitors, the incubator, and additional devices, still pass to the newborn.

Conclusions: The incubator does protect only insufficiently from noise coming from the NICUThe transmitted frequency spectrum is changed, limiting the impact of NICU noise on the neonate, but also limiting the neonate's perception of voices. The incubator, in particular its fan, as well as alarms from patient monitors are major sources of noise. Further optimizations with regard to the sound exposure in the NICU, as well as studies on the role of the incubator as a source and modulator, are needed to meet the preterm infants' multi-sensory needs.

Keywords: neonatal intensive care unit; newborn incubators; noise; sound.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Literature review about “noise AND NICU” according to the PRISMA guideline.
Figure 1
Figure 1
(a) Incubator in an NICU. In the picture, half of the top of the incubator is covered by a blanket to decrease the brightness inside the incubator. Image source: University Hospital Zurich; with permission. (b) Close-up of the incubator used in the study. The paths of two main sources of noise for the incubator are indicated by red arrows: sound coming from outside and inside. The orange circle indicates the position of the measurement microphone.
Figure 2
Figure 2
(a) Spectrogram of the noise produced by the incubator during the start-up phase. (b,c) Spectrograms of the warning and danger sounds produced by the IntelliVue MX550, Philips monitor next to the incubator.
Figure 3
Figure 3
(a) Noise spectra recorded inside and outside an incubator located in an NICU. Peak frequencies are indicated at the specific peaks. The recording was done in an NICU with several incubators working and under normal clinical working conditions. (b) Time-series of SPL variations over about 2 h, measuring inside and outside an incubator. (c) Distribution of SPL values shown in (b).

References

    1. Kuhn P., Zores C., Langlet C., Escande B., Astruc D., Dufour A. Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators. Acta Paediatr. 2013;102:949–954. doi: 10.1111/apa.12330.
    1. Wroblewska-Seniuk K., Greczka G., Dabrowski P., Szyfter-Harris J., Mazela J. Hearing impairment in premature newborns-Analysis based on the national hearing screening database in Poland. PLoS ONE. 2017;12:e0184359. doi: 10.1371/journal.pone.0184359.
    1. Perlman J.M. Neurobehavioral deficits in premature graduates of intensive care—potential medical and neonatal environmental risk factors. Pediatrics. 2001;108:1339–1348. doi: 10.1542/peds.108.6.1339.
    1. Chang E.F. Environmental Noise Retards Auditory Cortical Development. Science. 2003;300:498–502. doi: 10.1126/science.1082163.
    1. Pineda R.G., Neil J., Dierker D., Smyser C.D., Wallendorf M., Kidokoro H., Reynolds L.C., Walker S., Rogers C., Mathur A.M., et al. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J. Pediatr. 2014;164:52–60.e2. doi: 10.1016/j.jpeds.2013.08.047.
    1. Haslbeck F.B., Jakab A., Held U., Bassler D., Bucher H.U., Hagmann C. Creative music therapy to promote brain function and brain structure in preterm infants: A randomized controlled pilot study. Neuroimage Clin. 2020;25:102171. doi: 10.1016/j.nicl.2020.102171.
    1. Caskey M., Stephens B., Tucker R., Vohr B. Importance of parent talk on the development of preterm infant vocalizations. Pediatrics. 2011;128:910–916. doi: 10.1542/peds.2011-0609.
    1. Abrams R.M., Gerhardt K.J. The acoustic environment and physiological responses of the fetus. J. Perinatol. 2000;20:S31–S36. doi: 10.1038/sj.jp.7200445.
    1. Hepper P.G., Shahidullah B.S. Development of fetal hearing. Arch. Dis. Child. Fetal. Neonatal. Ed. 1994;71:F81–F87. doi: 10.1136/fn.71.2.F81.
    1. ACOG Committee on Obstetric Practice . Guidelines for Perinatal Care. 7th ed. American Academy of Pediatrics; Itasca, IL, USA: 2012.
    1. Levy G.D., Woolston D.J., Browne J.V. Mean noise amounts in level II vs level III neonatal intensive care units. Neonatal. Netw. 2003;22:33–38. doi: 10.1891/0730-0832.22.2.33.
    1. Mankin R.W. Acoustical detection of Aedes taeniorhynchus swarms and emergence exoduses in remote salt marshes. J. Am. Mosq. Control. Assoc. 1994;10:302–308.
    1. Almadhoob A., Ohlsson A. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst. Rev. 2020;1:CD010333. doi: 10.1002/14651858.CD010333.pub3.
    1. Thomas K.A., Martin P.A. NICU sound environment and the potential problems for caregivers. J. Perinatol. 2000;20:S94–S99. doi: 10.1038/sj.jp.7200435.
    1. Verderber S., Gray S., Suresh-Kumar S., Kercz D., Parshuram C. Intensive Care Unit Built Environments: A Comprehensive Literature Review (2005–2020) HERD. 2021 doi: 10.1177/19375867211009273.
    1. Elbaz M., Leger D., Sauvet F., Champigneulle B., Rio S., Strauss M., Chennaoui M., Guilleminault C., Mira J.P. Sound level intensity severely disrupts sleep in ventilated ICU patients throughout a 24-h period: A preliminary 24-h study of sleep stages and associated sound levels. Ann. Intensive Care. 2017;7:25. doi: 10.1186/s13613-017-0248-7.
    1. Bry A., Wigert H. Psychosocial support for parents of extremely preterm infants in neonatal intensive care: A qualitative interview study. BMC Psychol. 2019;7:76. doi: 10.1186/s40359-019-0354-4.
    1. Hutchinson G., Du L., Ahmad K. Incubator-based Sound Attenuation: Active Noise Control In A Simulated Clinical Environment. PLoS ONE. 2020;15:e0235287. doi: 10.1371/journal.pone.0235287.
    1. Pineda R., Guth R., Herring A., Reynolds L., Oberle S., Smith J. Enhancing sensory experiences for very preterm infants in the NICU: An integrative review. J. Perinatol. 2017;37:323–332. doi: 10.1038/jp.2016.179.
    1. Filippa M., Panza C., Ferrari F., Frassoldati R., Kuhn P., Balduzzi S., D’Amico R. Systematic review of maternal voice interventions demonstrates increased stability in preterm infants. Acta Paediatr. 2017;106:1220–1229. doi: 10.1111/apa.13832.
    1. Monson B.B., Rock J., Cull M., Soloveychik V. Neonatal intensive care unit incubators reduce language and noise levels more than the womb. J. Perinatol. 2020;40:600–606. doi: 10.1038/s41372-020-0592-6.
    1. Blennow G., Svenningsen N.W., Almquist B. Noise levels in infant incubators (adverse effects?) Pediatrics. 1974;53:29–32.
    1. Fernandez Zacarias F., Beira Jimenez J.L., Bustillo Velazquez-Gaztelu P.J., Hernandez Molina R., Lubian Lopez S. Noise level in neonatal incubators: A comparative study of three models. Int. J. Pediatr. Otorhinolaryngol. 2018;107:150–154. doi: 10.1016/j.ijporl.2018.02.013.
    1. Parra J., de Suremain A., Berne Audeoud F., Ego A., Debillon T. Sound levels in a neonatal intensive care unit significantly exceeded recommendations, especially inside incubators. Acta Paediatr. 2017;106:1909–1914. doi: 10.1111/apa.13906.
    1. Berglund B., Lindvall T., Schwela D.H. Guidelines for Community Noise. World Health Organization; Geneva, Switzerland: 1999.
    1. Noise: A hazard for the fetus and newborn American Academy of Pediatrics. Committee on Environmental Health. Pediatrics. 1997;100:724–727.
    1. Graven S.N. Sound and the developing infant in the NICU: Conclusions and recommendations for care. J. Perinatol. 2000;20:S88–S93. doi: 10.1038/sj.jp.7200444.
    1. White R.D. Recommended standards for the newborn ICU. J. Perinatol. 2007;27:S4–S19. doi: 10.1038/sj.jp.7211837.
    1. White R.D., Consensus Committee on Recommended Design Standards for Advanced Neonatal Care Recommended standards for newborn ICU design, 9th edition. J. Perinatol. 2020;40:2–4. doi: 10.1038/s41372-020-0766-2.
    1. Crandall I.B., MacKenzie D. Analysis of the Energy Distribution in Speech. Physical. Rev. 1922;19:221–232. doi: 10.1103/PhysRev.19.221.
    1. Cox R.V., Neto S.F.D.C., Lamblin C., Sherif M.H. ITU-T coders for wideband, superwideband, and fullband speech communication [Series Editorial] IEEE Commun. Mag. 2009;47:106–109. doi: 10.1109/MCOM.2009.5273816.
    1. Liu C., Fu Q.J., Narayanan S.S. Effect of bandwidth extension to telephone speech recognition in cochlear implant users. J. Acoust. Soc. Am. 2009;125:EL77–EL83. doi: 10.1121/1.3062145.
    1. Fletcher H. Physical measurements of audition and their bearing on the theory of hearing. Bell Syst. Tech. J. 1923;2:145–180. doi: 10.1002/j.1538-7305.1923.tb01296.x.
    1. Allen J.B. Harvey Fletcher’s role in the creation of communication acoustics. J. Acoust. Soc. Am. 1996;99:1825–1839. doi: 10.1121/1.415364.
    1. French N.R., Steinberg J.C. Factors Governing the Intelligibility of Speech Sounds. J. Acoust. Soc. Am. 1947;19:90–119. doi: 10.1121/1.1916407.
    1. Liao J., Liu G., Xie N., Wang S., Wu T., Lin Y., Hu R., He H.G. Mothers’ voices and white noise on premature infants’ physiological reactions in a neonatal intensive care unit: A multi-arm randomized controlled trial. Int. J. Nurs. Stud. 2021;119:103934. doi: 10.1016/j.ijnurstu.2021.103934.
    1. Gadeke R., Doring B., Keller F., Vogel A. The noise level in a childrens hospital and the wake-up threshold in infants. Acta Paediatr. Scand. 1969;58:164–170. doi: 10.1111/j.1651-2227.1969.tb04701.x.
    1. Zimmerman E., Lahav A. Ototoxicity in preterm infants: Effects of genetics, aminoglycosides, and loud environmental noise. J. Perinatol. 2013;33:3–8. doi: 10.1038/jp.2012.105.
    1. Bellieni C.V., Buonocore G., Pinto I., Stacchini N., Cordelli D.M., Bagnoli F. Use of sound-absorbing panel to reduce noisy incubator reverberating effects. Biol. Neonate. 2003;84:293–296. doi: 10.1159/000073637.
    1. Abou Turk C., Williams A.L., Lasky R.E. A randomized clinical trial evaluating silicone earplugs for very low birth weight newborns in intensive care. J. Perinatol. 2009;29:358–363. doi: 10.1038/jp.2008.236.
    1. Freudenthal A., van Stuijvenberg M., van Goudoever J.B. A quiet NICU for improved infants’ health, development and well-being: A systems approach to reducing noise and auditory alarms. Cogn. Technol. Work. 2012;15:329–345. doi: 10.1007/s10111-012-0235-6.
    1. Casey L., Fucile S., Flavin M., Dow K. A two-pronged approach to reduce noise levels in the neonatal intensive care unit. Early Hum. Dev. 2020;146:105073. doi: 10.1016/j.earlhumdev.2020.105073.
    1. Busch-Vishniac I.J., West J.E., Barnhill C., Hunter T., Orellana D., Chivukula R. Noise levels in Johns Hopkins Hospital. J. Acoust. Soc. Am. 2005;118:3629–3645. doi: 10.1121/1.2118327.
    1. Darcy A.E., Hancock L.E., Ware E.J. A descriptive study of noise in the neonatal intensive care unit: Ambient levels and perceptions of contributing factors. Adv. Neonatal Care Off. J. Natl. Assoc. Neonatal. Nurses. 2008;8:S16–S26. doi: 10.1097/01.ANC.0000337268.85717.7c.
    1. Lasky R.E., Williams A.L. Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics. 2009;123:540–546. doi: 10.1542/peds.2007-3418.
    1. Berg A.L. Monitoring Noise Levels in a Tertiary Neonatal. Intensive Care Unit. Contemp. Issues Commun. Sci. Disord. 2010;37:69–72. doi: 10.1044/cicsd_36_S_69.
    1. O’Callaghan N., Dee A., Philip R.K. Evidence-based design for neonatal units: A systematic review. Matern Health Neonatol. Perinatol. 2019;5:6. doi: 10.1186/s40748-019-0101-0.
    1. van Veenendaal N.R., van Kempen A., Franck L.S., O’Brien K., Limpens J., van der Lee J.H., van Goudoever J.B., van der Schoor S.R.D. Hospitalising preterm infants in single family rooms versus open bay units: A systematic review and meta-analysis of impact on parents. EClinicalMedicine. 2020;23:100388. doi: 10.1016/j.eclinm.2020.100388.
    1. Liu W.F. Comparing sound measurements in the single-family room with open-unit design neonatal intensive care unit: The impact of equipment noise. J. Perinatol. 2012;32:368–373. doi: 10.1038/jp.2011.103.
    1. Van Enk R.A., Steinberg F. Comparison of private room with multiple-bed ward neonatal intensive care unit. HERD. 2011;5:52–63. doi: 10.1177/193758671100500105.
    1. Chen H.L., Chen C.H., Wu C.C., Huang H.J., Wang T.M., Hsu C.C. The influence of neonatal intensive care unit design on sound level. Pediatr. Neonatol. 2009;50:270–274. doi: 10.1016/S1875-9572(09)60076-0.
    1. Stevens D.C., Akram Khan M., Munson D.P., Reid E.J., Helseth C.C., Buggy J. The impact of architectural design upon the environmental sound and light exposure of neonates who require intensive care: An evaluation of the Boekelheide Neonatal. Intensive Care Nursery. J. Perinatol. 2007;27:S20–S28. doi: 10.1038/sj.jp.7211838.
    1. Stevens D.C., Helseth C.C., Thompson P.A., Pottala J.V., Khan M.A., Munson D.P. A Comprehensive Comparison of Open-Bay and Single-Family-Room Neonatal. Intensive Care Units at Sanford Children’s Hospital. HERD. 2012;5:23–39. doi: 10.1177/193758671200500403.
    1. Stevens D., Thompson P., Helseth C., Pottala J. Mounting evidence favoring single-family room neonatal intensive care. J. Neonatal. Perinat. Med. 2015;8:177–178. doi: 10.3233/NPM-15915035.
    1. Surenthiran S.S., Wilbraham K., May J., Chant T., Emmerson A.J., Newton V.E. Noise levels within the ear and post-nasal space in neonates in intensive care. Arch. Dis. Child. Fetal. Neonatal. Ed. 2003;88:F315–F318. doi: 10.1136/fn.88.4.F315.
    1. Hoehn T., Busch A., Krause M.F. Comparison of noise levels caused by four different neonatal high-frequency ventilators. Intensive Care Med. 2000;26:84–87. doi: 10.1007/s001340050016.
    1. Kazemizadeh Gol M.A., Black A., Sidman J. Bone conduction noise exposure via ventilators in the neonatal intensive care unit. Laryngoscope. 2015;125:2388–2392. doi: 10.1002/lary.25199.
    1. Herrmann B., Augereau T., Johnsrude I.S. Neural Responses and Perceptual Sensitivity to Sound Depend on Sound-Level Statistics. Sci. Rep. 2020;10:9571. doi: 10.1038/s41598-020-66715-1.
    1. Job R.F., Hatfield J., Carter N.L., Peploe P., Taylor R., Morrell S. General scales of community reaction to noise (dissatisfaction and perceived affectedness) are more reliable than scales of annoyance. J. Acoust. Soc. Am. 2001;110:939–946. doi: 10.1121/1.1385178.
    1. Pavlov I.P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford Univ. Press; Oxford, UK: 1927.
    1. Lim N. Cultural differences in emotion: Differences in emotional arousal level between the East and the West. Integr. Med. Res. 2016;5:105–109. doi: 10.1016/j.imr.2016.03.004.
    1. Kliuchko M., Heinonen-Guzejev M., Vuust P., Tervaniemi M., Brattico E. A window into the brain mechanisms associated with noise sensitivity. Sci. Rep. 2016;6:39236. doi: 10.1038/srep39236.
    1. Heinonen-Guzejev M., Vuorinen H.S., Mussalo-Rauhamaa H., Heikkila K., Koskenvuo M., Kaprio J. Genetic component of noise sensitivity. Twin Res. Hum. Genet. 2005;8:245–249. doi: 10.1375/twin.8.3.245.
    1. Brezmes-Raposo M., Bermudez L., Dominguez C., Fernandez C., Franco A., Villa C., Sanz I., Pino-Vazquez A. P0503/#2118: Caring for the invisible. how to humanize clinical care in a pediatric and neonatal intensive care unit. Pediatric. Crit. Care Med. 2021;22:253.
    1. Wielek T., Del Giudice R., Lang A., Wislowska M., Ott P., Schabus M. On the development of sleep states in the first weeks of life. PLoS ONE. 2019;14:e0224521. doi: 10.1371/journal.pone.0224521.
    1. Saliba S., Esseily R., Filippa M., Gratier M., Grandjean D. Changes in the vocal qualities of mothers and fathers are related to preterm infant’s behavioural states. Acta Paediatr. 2020;109:2271–2277. doi: 10.1111/apa.15238.
    1. Shinya Y., Kawai M., Niwa F., Imafuku M., Myowa M. Fundamental Frequency Variation of Neonatal. Spontaneous Crying Predicts Language Acquisition in Preterm and Term Infants. Front. Psychol. 2017;8:2195. doi: 10.3389/fpsyg.2017.02195.
    1. McDermott J.H., Schultz A.F., Undurraga E.A., Godoy R.A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature. 2016;535:547–550. doi: 10.1038/nature18635.
    1. Olejnik B.K. Inadvertent Noise in Neonatal. Intensive Care Unit and its Impact on Prematurely Born Infants. Biomed. J. Sci. Tech. Res. 2018;11 doi: 10.26717/BJSTR.2018.11.002063.
    1. Bertsch M., Reuter C., Czedik-Eysenberg I., Berger A., Olischar M., Bartha-Doering L., Giordano V. The “Sound of Silence” in a Neonatal. Intensive Care Unit-Listening to Speech and Music Inside an Incubator. Front. Psychol. 2020;11:1055. doi: 10.3389/fpsyg.2020.01055.
    1. Meyer J., Dentel L., Meunier F. Speech recognition in natural background noise. PLoS ONE. 2013;8:e79279. doi: 10.1371/journal.pone.0079279.
    1. International Electrotechnical Commission . IEC 60268-16:2020 Sound System Equipment—Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index. 5th ed. International Electrotechnical Commission; Geneva, Switzerland: 2020.
    1. Kuhl P.K. Early language acquisition: Cracking the speech code. Nat. Rev. Neurosci. 2004;5:831–843. doi: 10.1038/nrn1533.
    1. Trehub S.E., Bull D., Schneider B.A. Infants’ detection of speech in noise. J. Speech Hear. Res. 1981;24:202–206. doi: 10.1044/jshr.2402.202.
    1. Spinelli M., Fasolo M., Mesman J. Does prosody make the difference? A meta-analysis on relations between prosodic aspects of infant-directed speech and infant outcomes. Dev. Rev. 2017;44:1–18. doi: 10.1016/j.dr.2016.12.001.
    1. Aita M., Robins S., Charbonneau L., Doray-Demers P., Feeley N. Comparing light and noise levels before and after a NICU change of design. J. Perinatol. 2021 doi: 10.1038/s41372-021-01007-8.
    1. Ramesh A., Denzil S.B., Linda R., Josephine P.K., Nagapoornima M., Suman Rao P.N., Swarna Rekha A. Maintaining reduced noise levels in a resource-constrained neonatal intensive care unit by operant conditioning. Indian Pediatr. 2013;50:279–282. doi: 10.1007/s13312-013-0094-0.
    1. Ruben R.J. The Ontogeny of Human Hearing. Acta Oto-Laryngol. 1992;112:192–196. doi: 10.1080/00016489.1992.11665402.
    1. Gilmour D., Duong K.M., Gilmour I.J., Davies M.W. NeoSTRESS: Study of Transfer and Retrieval Environmental Stressors upon neonates via a smartphone application—Sound. J. Paediatr. Child. Health. 2020;56:1396–1401. doi: 10.1111/jpc.14947.
    1. Capriolo C., Viscardi R.M., Broderick K.A., Nassebeh S., Kochan M., Solanki N.S., Leung J.C. Assessment of Neonatal. Intensive Care Unit Sound Exposure Using a Smartphone Application. Am. J. Perinatol. 2020 doi: 10.1055/s-0040-1714679.
    1. Haslbeck F.B., Bassler D. Music From the Very Beginning-A Neuroscience-Based Framework for Music as Therapy for Preterm Infants and Their Parents. Front. Behav. Neurosci. 2018;12:112. doi: 10.3389/fnbeh.2018.00112.

Source: PubMed

3
Suscribir