Implementing nudges to promote utilization of low tidal volume ventilation (INPUT): a stepped-wedge, hybrid type III trial of strategies to improve evidence-based mechanical ventilation management

Meeta Prasad Kerlin, Dylan Small, Barry D Fuchs, Mark E Mikkelsen, Wei Wang, Teresa Tran, Stefania Scott, Aerielle Belk, Jasmine A Silvestri, Tamar Klaiman, Scott D Halpern, Rinad S Beidas, Meeta Prasad Kerlin, Dylan Small, Barry D Fuchs, Mark E Mikkelsen, Wei Wang, Teresa Tran, Stefania Scott, Aerielle Belk, Jasmine A Silvestri, Tamar Klaiman, Scott D Halpern, Rinad S Beidas

Abstract

Background: Behavioral economic insights have yielded strategies to overcome implementation barriers. For example, default strategies and accountable justification strategies have improved adherence to best practices in clinical settings. Embedding such strategies in the electronic health record (EHR) holds promise for simple and scalable approaches to facilitating implementation. A proven-effective but under-utilized treatment for patients who undergo mechanical ventilation involves prescribing low tidal volumes, which protects the lungs from injury. We will evaluate EHR-based implementation strategies grounded in behavioral economic theory to improve evidence-based management of mechanical ventilation.

Methods: The Implementing Nudges to Promote Utilization of low Tidal volume ventilation (INPUT) study is a pragmatic, stepped-wedge, hybrid type III effectiveness implementation trial of three strategies to improve adherence to low tidal volume ventilation. The strategies target clinicians who enter electronic orders and respiratory therapists who manage the mechanical ventilator, two key stakeholder groups. INPUT has five study arms: usual care, a default strategy within the mechanical ventilation order, an accountable justification strategy within the mechanical ventilation order, and each of the order strategies combined with an accountable justification strategy within flowsheet documentation. We will create six matched pairs of twelve intensive care units (ICUs) in five hospitals in one large health system to balance patient volume and baseline adherence to low tidal volume ventilation. We will randomly assign ICUs within each matched pair to one of the order panels, and each pair to one of six wedges, which will determine date of adoption of the order panel strategy. All ICUs will adopt the flowsheet documentation strategy 6 months afterwards. The primary outcome will be fidelity to low tidal volume ventilation. The secondary effectiveness outcomes will include in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay, and occurrence of potential adverse events.

Discussion: This stepped-wedge, hybrid type III trial will provide evidence regarding the role of EHR-based behavioral economic strategies to improve adherence to evidence-based practices among patients who undergo mechanical ventilation in ICUs, thereby advancing the field of implementation science, as well as testing the effectiveness of low tidal volume ventilation among broad patient populations.

Trial registration: ClinicalTrials.gov , NCT04663802 . Registered 11 December 2020.

Keywords: Acute respiratory distress syndrome; Behavioral economics; Hybrid implementation-effectiveness trial; Low tidal volume; Mechanical ventilation; Nudge.

Conflict of interest statement

Rinad Beidas receives royalties from Oxford University Press. She has served as a consultant to Camden Coalition of Healthcare Providers. She provides consultation to United Behavioral Health. She serves on the Clinical and Scientific Advisory Board for Optum Behavioral Health. Scott Halpern is a paid member of the Steering Committee for the NIA-funded IMPACT Collaboratory and receives consulting fees from Atrium Health and Georgia State University. The rest of the authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Conceptual model of relationships under study. The conceptual model maps the relationships under study to the Proctor model for implementation research. Dashed arrows indicated factors that may interact with the implementation strategies with respect to implementation and effectiveness outcomes. Aim 1 will test implementation outcomes, and aim 2 will test effectiveness outcomes
Fig. 2
Fig. 2
Trial schematic. Stepped wedge roll-out of three strategies to promote the use of lung-protective ventilation. Strategy A is a default order panel for MV that is auto-populated with lung-protective settings. Strategy B is an order panel that incorporates accountable justification requiring a user to provide a reason when LPV settings are not entered. Strategy C is an accountable justification strategy embedded in the flowsheet documentation
Fig. 3
Fig. 3
Screenshots of EHR-based strategies. A The default order strategy, in which the ventilation mode (red arrow) and tidal volume (purple arrow) are pre-populated. B The accountable justification order strategy, in which a reason must be provided (red arrow) if the set tidal volume entered is above 6.5 ml/kg PBW. If the reason is not provided upon order submission, an alert pops up and prevents order submission until the field is completed. C The accountable justification flowsheet strategy, in which a reason must be provided by the RT if a set tidal volume is documented to be above 6.5 ml/kg PBW

References

    1. Yoong SL, Hall A, Stacey F, Grady A, Sutherland R, Wyse R, Anderson A, Nathan N, Wolfenden L. Nudge strategies to improve healthcare providers’ implementation of evidence-based guidelines, policies and practices: a systematic review of trials included within Cochrane systematic reviews. Implementation Sci. 2020;15(1):50. doi: 10.1186/s13012-020-01011-0.
    1. Nuffield Council on Bioethics . Public health: ethical issues. London: Nuffield Council on Bioethics; 2007.
    1. Johnson EJ, Goldstein D. Medicine Do defaults save lives? Science. 2003;302(5649):1338–1339. doi: 10.1126/science.1091721.
    1. Halpern SD, Ubel PA, Asch DA. Harnessing the power of default options to improve health care. New Engl J Med. 2007;357(13):1340–1344. doi: 10.1056/NEJMsb071595.
    1. Lerner JS, Tetlock PE. Accounting for the effects of accountability. Psychol Bull. 1999;125(2):255–275. doi: 10.1037/0033-2909.125.2.255.
    1. De Cremer D, Barker M. Accountability and cooperation in social dilemmas: The influence of others’ reputational concerns. Curr Psychol. 2003;22(2):155–163. doi: 10.1007/s12144-003-1006-6.
    1. Sedikides C, Herbst KC, Hardin DP, Dardis GJ. Accountability as a deterrent to self-enhancement: The search for mechanisms. J Personality Social Psychol. 2002;83(3):592–605. doi: 10.1037/0022-3514.83.3.592.
    1. Tetlock PE, Skitka L, Boettger R. Social and cognitive strategies for coping with accountability: conformity, complexity, and bolstering. J Person Soc Psychol. 1989;57(4):632–640. doi: 10.1037/0022-3514.57.4.632.
    1. Mehta M, Veith J, Szymanski S, Madden V, Hart JL, Kerlin MP. Clinicians’ perceptions of behavioral economic strategies to increase the use of lung-protective ventilation. Ann Amer Thoracic Soc. 2019;16(12):1543–1549. doi: 10.1513/AnnalsATS.201905-410OC.
    1. Patel MS, Day SC, Halpern SD, Hanson CW, Martinez JR, Honeywell S, Jr, Volpp KG. Generic medication prescription rates after health system-wide redesign of default options within the electronic health record. JAMA Internal Med. 2016;176(6):847–848. doi: 10.1001/jamainternmed.2016.1691.
    1. O'Connor SD, Sodickson AD, Ip IK, Raja AS, Healey MJ, Schneider LI, Khorasani R. Journal club: requiring clinical justification to override repeat imaging decision support: impact on CT use. Amer J Roentgenol. 2014;203(5):W482–W490. doi: 10.2214/AJR.14.13017.
    1. Meeker D, Linder JA, Fox CR, Friedberg MW, Persell SD, Goldstein NJ, Knight TK, Hay JW, Doctor JN. Effect of behavioral interventions on inappropriate antibiotic prescribing among primary care practices: a randomized clinical trial. JAMA. 2016;315(6):562–570. doi: 10.1001/jama.2016.0275.
    1. Wunsch H, Linde-Zwirble WT, Angus DC, Hartman ME, Milbrandt EB, Kahn JM. The epidemiology of mechanical ventilation use in the United States. Crit Care Med. 2010;38(10):1947–1953. doi: 10.1097/CCM.0b013e3181ef4460.
    1. Kerlin MP, Weissman GE, Wonneberger KA, Kent S, Madden V, Liu VX, Halpern SD. Validation of administrative definitions of invasive mechanical ventilation across 30 intensive care units. Amer J Resp Crit Care Med. 2016;194(12):1548–1552. doi: 10.1164/rccm.201605-0953LE.
    1. Wunsch H, Kramer A, Gershengorn HB. Validation of Intensive Care and Mechanical Ventilation Codes in Medicare Data. Crit Care Med. 2017;45(7):e711–e714. doi: 10.1097/CCM.0000000000002316.
    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–2136. doi: 10.1056/NEJMra1208707.
    1. Villar J, Blanco J, Anon JM, et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 2011;37(12):1932–1941. doi: 10.1007/s00134-011-2380-4.
    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome The Acute Respiratory Distress Syndrome Network. New Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Fan E, Del Sorbo L, Goligher EC, et al. An official american thoracic society/European Society of Intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Amer J Resp Crit Care Med. 2017;195(9):1253–1263. doi: 10.1164/rccm.201703-0548ST.
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A, for the LUNG SAFE Investigators and the ESICM Trials Group Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. doi: 10.1001/jama.2016.0291.
    1. Weiss CH, Baker DW, Weiner S, Bechel M, Ragland M, Rademaker A, Weitner BB, Agrawal A, Wunderink RG, Persell SD. Low tidal volume ventilation use in acute respiratory distress syndrome. Crit Care Med. 2016;44(8):1515–1522. doi: 10.1097/CCM.0000000000001710.
    1. Kalhan R, Mikkelsen M, Dedhiya P, Christie J, Gaughan C, Lanken PN, Finkel B, Gallop R, Fuchs BD. Underuse of lung protective ventilation: analysis of potential factors to explain physician behavior. Crit Care Med. 2006;34(2):300–306. doi: 10.1097/01.CCM.0000198328.83571.4A.
    1. Mikkelsen ME, Dedhiya PM, Kalhan R, Gallop RJ, Lanken PN, Fuchs BD. Potential reasons why physicians underuse lung-protective ventilation: a retrospective cohort study using physician documentation. Respiratory Care. 2008;53(4):455–461.
    1. Rubenfeld GD, Cooper C, Carter G, Thompson BT, Hudson LD. Barriers to providing lung-protective ventilation to patients with acute lung injury. Crit Care Med. 2004;32(6):1289–1293. doi: 10.1097/01.CCM.0000127266.39560.96.
    1. Dennison CR, Mendez-Tellez PA, Wang W, Pronovost PJ, Needham DM. Barriers to low tidal volume ventilation in acute respiratory distress syndrome: survey development, validation, and results. Crit Care Med. 2007;35(12):2747–2754. doi: 10.1097/00003246-200712000-00012.
    1. Weiss CH, Baker DW, Tulas K, Weiner S, Bechel M, Rademaker A, Fought A, Wunderink RG, Persell SD. A critical care clinician survey comparing attitudes and perceived barriers to low tidal volume ventilation with actual practice. Ann Amer Thorac Soc. 2017;14(11):1682–1689. doi: 10.1513/AnnalsATS.201612-973OC.
    1. Sjoding MW, Cooke CR, Iwashyna TJ, Hofer TP. Acute respiratory distress syndrome measurement error. Potential Effect on Clinical Study Results. Ann Amer Thorac Soc. 2016;13(7):1123–1128. doi: 10.1513/AnnalsATS.201601-072OC.
    1. Sjoding MW, Hofer TP, Co I, Courey A, Cooke CR, Iwashyna TJ. Interobserver reliability of the Berlin ARDS definition and strategies to improve the reliability of ARDS diagnosis. Chest. 2018;153(2):361-7.
    1. Neto AS, Simonis FD, Barbas CS, et al. Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data meta-analysis. Intensive Care Med. 2014;40(7):950–957. doi: 10.1007/s00134-014-3318-4.
    1. Neto AS, Simonis FD, Barbas CS, et al. Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med. 2015;43(10):2155–2163. doi: 10.1097/CCM.0000000000001189.
    1. Investigators WGftP Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial. JAMA. 2018;320(18):1872–1880. doi: 10.1001/jama.2018.14280.
    1. Needham DM, Yang T, Dinglas VD, Mendez-Tellez PA, Shanholtz C, Sevransky JE, Brower RG, Pronovost PJ, Colantuoni E. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome. A prospective cohort study. Amer J Resp Crit Care Med. 2015;191(2):177–185. doi: 10.1164/rccm.201409-1598OC.
    1. Curran GM, Bauer M, Mittman B, Pyne JM, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Medical Care. 2012;50(3):217–226. doi: 10.1097/MLR.0b013e3182408812.
    1. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, Griffey R, Hensley M. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38(2):65–76. doi: 10.1007/s10488-010-0319-7.
    1. Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implementation Sci. 2009;4(1):1–15. doi: 10.1186/1748-5908-4-50.
    1. Proctor EK, Landsverk J, Aarons G, Chambers D, Glisson C, Mittman B. Implementation research in mental health services: an emerging science with conceptual, methodological, and training challenges. Admi Policy Mental Health Mental Health Serv Res. 2009;36(1):24–34. doi: 10.1007/s10488-008-0197-4.
    1. Sjoding MW, Gong MN, Haas CF, Iwashyna TJ. Evaluating delivery of low tidal volume ventilation in six ICUs using electronic health record data. Crit Care Med. 2019;47(1):56–61. doi: 10.1097/CCM.0000000000003469.
    1. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, Shintani AK, Thompson JL, Jackson JC, Deppen SA, Stiles RA, Dittus RS, Bernard GR, Ely EW. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644–2653. doi: 10.1001/jama.298.22.2644.
    1. Escobar GJ, Gardner MN, Greene JD, Draper D, Kipnis P. Risk-adjusting hospital mortality using a comprehensive electronic record in an integrated health care delivery system. Medical Care. 2013;51(5):446–453. doi: 10.1097/MLR.0b013e3182881c8e.
    1. Lin W, Halpern SD, Prasad Kerlin M, Small DS. A “placement of death” approach for studies of treatment effects on ICU length of stay. Stat Methods Med Res. 2017;26(1):292–311. doi: 10.1177/0962280214545121.
    1. Beidas RS, Buttenheim AM, Mandell DS. Transforming Mental Health Care Delivery Through Implementation Science and Behavioral Economics. JAMA psychiatry. 2021. (online ahead of print)
    1. Azzam HC, Khalsa SS, Urbani R, Shah CV, Christie JD, Lanken PN, Fuchs BD. Validation study of an automated electronic acute lung injury screening tool. J Amer Med Inform Assoc. 2009;16(4):503–508. doi: 10.1197/jamia.M3120.

Source: PubMed

3
Suscribir