Assessment of DHA on reducing early preterm birth: the ADORE randomized controlled trial protocol

Susan E Carlson, Byron J Gajewski, Christina J Valentine, Lynette K Rogers, Carl P Weiner, Emily A DeFranco, Catalin S Buhimschi, Susan E Carlson, Byron J Gajewski, Christina J Valentine, Lynette K Rogers, Carl P Weiner, Emily A DeFranco, Catalin S Buhimschi

Abstract

Background: Preterm birth contributes to 0.5 million deliveries in the United States (one of eight pregnancies) and poses a huge burden on public health with costs in the billions. Of particular concern is that the rate of earliest preterm birth (<34 weeks) (ePTB), which has decreased little since 1990 and has the greatest impact on the overall infant mortality, resulting in the greatest cost to society. Docosahexaenoic acid (DHA) supplementation provides a potential high yield, low risk strategy to reduce early preterm delivery in the US by up to 75%. We propose a Phase III Clinical Trial (randomized to low or high dose DHA, double-blinded) to examine the efficacy and safety of high dose DHA supplementation to reduce ePTB. We also plan for a secondary pregnancy efficacy analysis to determine if there is a subset of pregnancies most likely to benefit from DHA supplementation.

Methods: Between 900 and 1200 pregnant women who are ≥ 18 years old and between 12 and 20 weeks gestation will be recruited from three trial experienced academic medical institutions. Participants will be randomly assigned to two daily capsules of algal oil (totaling 800 mg DHA) or soybean and corn oil (0 mg DHA). Both groups will receive a commercially available prenatal supplement containing 200 mg DHA. Therefore, the experimental group will receive 1000 mg DHA/d and the control group 200 mg DHA/d. We will then employ a novel Bayesian response adaptive randomization design that assigns more subjects to the "winning" group and potentially allows for substantially smaller sample size while providing a stronger conclusion regarding the most effective group. The study has an overall Type I error rate of 5% and a power of 90%. Participants are followed throughout pregnancy and delivery for safety and delivery outcomes.

Discussion: We hypothesize that DHA will decrease the frequency of ePTB <34 weeks. Reducing ePTB is clinically important as these earliest preterm deliveries carry the highest risk of neonatal morbidity, as well as contribute significant stress for families and post a large societal burden.

Trial registration: This trial was registered with ClinicalTrials.gov (identifier: NCT02626299 ) on December 8, 2015. Additional summary details may be found in Table 1.

Keywords: Docosahexaenoic acid; Pregnancy; Preterm birth.

Figures

Fig. 1
Fig. 1
Effect of DHA supplementation on milk DHA content
Fig. 2
Fig. 2
Biochemical pathways for DHA synthesis
Fig. 3
Fig. 3
Role of nutrient status on physiological response
Fig. 4
Fig. 4
Clusters in DHA status at enrollment and birth from an earlier trial of DHA supplementation during pregnancy

References

    1. Nesheim M, Yaktine AL. Seafood Chioces Balancing Benefits and Risks. Washington: The National Academies of Press; 2007.
    1. Brenna JT, Lapillonne A. Background paper on fat and fatty acid requirements during pregnancy and lactation. Ann Nutr Metab. 2009;55(1–3):97–122. doi: 10.1159/000228998.
    1. Emken EA, Adlof RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994;1213(3):277–88. doi: 10.1016/0005-2760(94)00054-9.
    1. Burdge GC. Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot Essent Fat Acids. 2006;75(3):161–8. doi: 10.1016/j.plefa.2006.05.013.
    1. Carlson SE, Colombo J, Gajewski BJ, et al. DHA supplementation and pregnancy outcomes. Am J Clin Nutr. 2013;97(4):808–15. doi: 10.3945/ajcn.112.050021.
    1. Parra MS, Schnaas L, Meydani M, Perroni E, Martinez S, Romieu I. Erythrocyte cell membrane phospholipid levels compared against reported dietary intakes of polyunsaturated fatty acids in pregnant Mexican women. Public Health Nutr. 2002;5(6a):931–7. doi: 10.1079/PHN2002381.
    1. Yuhas R, Pramuk K, Lien EL. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41(9):851–8. doi: 10.1007/s11745-006-5040-7.
    1. Gustafson KM, Carlson SE, Colombo J, et al. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: a randomized clinical trial. Prostaglandins Leukot Essent Fat Acids. 2013;88(5):331–8. doi: 10.1016/j.plefa.2013.01.009.
    1. Smuts CM, Huang M, Mundy D, Plasse T, Major S, Carlson SE. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol. 2003;101(3):469–79.
    1. Lakin V, Haggarty P, Abramovich DR, et al. Dietary intake and tissue concentration of fatty acids in omnivore, vegetarian and diabetic pregnancy. Prostaglandins Leukot Essent Fat Acids. 1998;59(3):209–20. doi: 10.1016/S0952-3278(98)90065-5.
    1. Otto SJ, van Houwelingen AC, Badart-Smook A, Hornstra G. Changes in the maternal essential fatty acid profile during early pregnancy and the relation of the profile to diet. Am J Clin Nutr. 2001;73(2):302–7.
    1. Kuipers RS, Luxwolda MF, Sango WS, Kwesigabo G, Dijck-Brouwer DA, Muskiet FA. Postdelivery changes in maternal and infant erythrocyte fatty acids in 3 populations differing in fresh water fish intakes. Prostaglandins Leukot Essent Fat Acids. 2011;85(6):387–97. doi: 10.1016/j.plefa.2011.06.004.
    1. March of Dimes PMNCH . Save the Children, WHO. In: Howson CP, Kinney MV, Lawn JE, editors. Born Too Soon: The Global Action Report on Preterm Birth. Geneva: World Health Organization; 2012.
    1. Harper M. 454: Low maternal omega-3 levels prior to 22 weeks’ gestation are associated with preterm delivery and low fish intake. Am J Obstet Gynecol. 2009;201(6, Supplement):S172. doi: 10.1016/j.ajog.2009.10.620.
    1. Valentine CJ, Morrow G, Fernandez S, et al. Docosahexaenoic Acid and Amino Acid Contents in Pasteurized Donor Milk are Low for Preterm Infants. J Pediatr. 2010;157(6):906–10. doi: 10.1016/j.jpeds.2010.06.017.
    1. Valentine CJ, Morrow G, Pennell M, et al. Randomized controlled trial of docosahexaenoic acid supplementation in midwestern U.S. human milk donors. Breastfeed Med. 2013;8(1):86–91. doi: 10.1089/bfm.2011.0126.
    1. Helland IB, Saarem K, Saugstad OD, Drevon CA. Fatty acid composition in maternal milk and plasma during supplementation with cod liver oil. Eur J Clin Nutr. 1998;52(11):839–45. doi: 10.1038/sj.ejcn.1600656.
    1. Connor C, McGinness M, Mammen J, et al. Axillary reverse mapping: a prospective study in women with clinically node negative and node positive breast cancer. Ann Surg Oncol. 2013;20(10):3303–7. doi: 10.1245/s10434-013-3113-4.
    1. Valentine CJ. Maternal dietary DHA supplementation to improve inflammatory outcomes in the preterm infant. Adv Nutr. 2012;3(3):370–6. doi: 10.3945/an.111.001248.
    1. Kromhout D, de Goede J. Update on cardiometabolic health effects of omega-3 fatty acids. Curr Opin Lipidol. 2014;25(1):85–90. doi: 10.1097/MOL.0000000000000041.
    1. Harris WS, Dayspring TD, Moran TJ. Omega-3 fatty acids and cardiovascular disease: new developments and applications. Postgrad Med. 2013;125(6):100–13. doi: 10.3810/pgm.2013.11.2717.
    1. Jiang W, Zhu Z, McGinley JN, El Bayoumy K, Manni A, Thompson HJ. Identification of a molecular signature underlying inhibition of mammary carcinoma growth by dietary N-3 fatty acids. Cancer Res. 2012;72(15):3795–806. doi: 10.1158/0008-5472.CAN-12-1047.
    1. MacLennan MB, Clarke SE, Perez K, et al. Mammary tumor development is directly inhibited by lifelong n-3 polyunsaturated fatty acids. J Nutr Biochem. 2013;24(1):388–95. doi: 10.1016/j.jnutbio.2012.08.002.
    1. Bougnoux P, Hajjaji N, Maheo K, Couet C, Chevalier S. Fatty acids and breast cancer: sensitization to treatments and prevention of metastatic re-growth. Prog Lipid Res. 2010;49(1):76–86. doi: 10.1016/j.plipres.2009.08.003.
    1. Lopez LB, Kritz-Silverstein D, Barrett CE. High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the Rancho Bernardo study. J Nutr Health Aging. 2011;15(1):25–31. doi: 10.1007/s12603-011-0009-5.
    1. Zhao Y, Calon F, Julien C, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS One. 2011;6(1):e15816. doi: 10.1371/journal.pone.0015816.
    1. Yurko-Mauro K, McCarthy D, Rom D, et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010;6(6):456–64. doi: 10.1016/j.jalz.2010.01.013.
    1. Hjorth E, Zhu M, Toro VC, et al. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. J Alzheimers Dis. 2013;35(4):697–713.
    1. Calder PC. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc. 2013;72(3):326–36. doi: 10.1017/S0029665113001031.
    1. Mas E, Croft KD, Zahra P, Barden A, Mori TA. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012;58(10):1476–84. doi: 10.1373/clinchem.2012.190199.
    1. Ji RR, Xu ZZ, Strichartz G, Serhan CN. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 2011;34(11):599–609. doi: 10.1016/j.tins.2011.08.005.
    1. Hong SH, Belayev L, Khoutorova L, Obenaus A, Bazan NG. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci. 2014;338(1–2):135–41. doi: 10.1016/j.jns.2013.12.033.
    1. Borre YE, Panagaki T, Koelink PJ, et al. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology. 2014;79:738–49. doi: 10.1016/j.neuropharm.2013.11.009.
    1. Colombo J, Carlson SE, Cheatham CL, et al. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am J Clin Nutr. 2013;98(2):403–12. doi: 10.3945/ajcn.112.040766.
    1. Willatts P, Forsyth S, Agostoni C, Casaer P, Riva E, Boehm G. Effects of long-chain PUFA supplementation in infant formula on cognitive function in later childhood. Am J Clin Nutr. 2013;98(2):536s–42. doi: 10.3945/ajcn.112.038612.
    1. Jacobson JL, Jacobson SW, Muckle G, Kaplan-Estrin M, Ayotte P, Dewailly E. Beneficial effects of a polyunsaturated fatty acid on infant development: evidence from the inuit of arctic Quebec. J Pediatr. 2008;152(3):356–64. doi: 10.1016/j.jpeds.2007.07.008.
    1. Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1):e39–44. doi: 10.1542/peds.111.1.e39.
    1. Birch EE, Khoury JC, Berseth CL, et al. The impact of early nutrition on incidence of allergic manifestations and common respiratory illnesses in children. J Pediatr. 2010;156(6):902–6. doi: 10.1016/j.jpeds.2010.01.002.
    1. Miyake Y, Tanaka K, Okubo H, Sasaki S, Arakawa M. Maternal fat intake during pregnancy and wheeze and eczema in Japanese infants: the Kyushu Okinawa Maternal and Child Health Study. Ann Epidemiol. 2013;23(11):674–80. doi: 10.1016/j.annepidem.2013.08.004.
    1. Montes R, Chisaguano AM, Castellote AI, Morales E, Sunyer J, Lopez-Sabater MC. Fatty-acid composition of maternal and umbilical cord plasma and early childhood atopic eczema in a Spanish cohort. Eur J Clin Nutr. 2013;67(6):658–63. doi: 10.1038/ejcn.2013.68.
    1. Pike KC, Calder PC, Inskip HM, et al. Maternal plasma phosphatidylcholine fatty acids and atopy and wheeze in the offspring at age of 6 years. Clin Dev Immunol. 2012;2012:474613. doi: 10.1155/2012/474613.
    1. Moon RJ, Harvey NC, Robinson SM, et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab. 2013;98(1):299–307. doi: 10.1210/jc.2012-2482.
    1. Olsen SF, Hansen HS, Jensen B, Sorensen TI. Pregnancy duration and the ratio of long-chain n-3 fatty acids to arachidonic acid in erythrocytes from Faroese women. J Intern Med Suppl. 1989;731:185–9. doi: 10.1111/j.1365-2796.1989.tb01454.x.
    1. Olsen SF, Sorensen JD, Secher NJ, et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet. 1992;339(8800):1003–7. doi: 10.1016/0140-6736(92)90533-9.
    1. Makrides M, Duley L, Olsen SF. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by pre-eclampsia or intrauterine growth restriction. Cochrane Database Syst Rev. 2006;(3):Cd003402.
    1. Imhoff-Kunsch B, Briggs V, Goldenberg T, Ramakrishnan U. Effect of n-3 long-chain polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):91–107. doi: 10.1111/j.1365-3016.2012.01292.x.
    1. Kar S, Wong M, Rogozinska E, Thangaratinam S. Effects of omega-3 fatty acids in prevention of early preterm delivery: a systematic review and meta-analysis of randomized studies. Eur J Obstet Gynecol Reprod Biol. 2016;198:40–6. doi: 10.1016/j.ejogrb.2015.11.033.
    1. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304(15):1675–83. doi: 10.1001/jama.2010.1507.
    1. Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG. 2000;107(3):382–95. doi: 10.1111/j.1471-0528.2000.tb13235.x.
    1. Harper M, Thom E, Klebanoff MA, et al. Omega-3 fatty acid supplementation to prevent recurrent preterm birth: a randomized controlled trial. Obstet Gynecol. 2010;115(2 Pt 1):234–42. doi: 10.1097/AOG.0b013e3181cbd60e.
    1. Martin J, Hamilton BE, Osterman MJ, Curtin SC, Mathers TJ. Births: Final Data for 2012. National vital statistics reports; vol 62 no 9. Hyattsville: National Center for Health Statistics; 2013.
    1. Lockwood CJ, Kuczynski E. Markers of risk for preterm delivery. J Perinat Med. 1999;27(1):5–20. doi: 10.1515/JPM.1999.001.
    1. Buhimschi CS, Baumbusch MA, Dulay AT, et al. Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol. 2009;175(3):958–75. doi: 10.2353/ajpath.2009.090156.
    1. Weiner CP, Mason CW, Dong Y, Buhimschi IA, Swaan PW, Buhimschi CS. Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. Am J Obstet Gynecol. 2010;202(5):474.e471–420. doi: 10.1016/j.ajog.2010.02.034.
    1. Defranco EA, Jacobs TS, Plunkett J, Chaudhari BP, Huettner PC, Muglia LJ. Placental pathologic aberrations in cases of familial idiopathic spontaneous preterm birth. Placenta. 2011;32(5):386–90. doi: 10.1016/j.placenta.2011.02.010.
    1. Rizza S, Tesauro M, Cardillo C, et al. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206(2):569–74. doi: 10.1016/j.atherosclerosis.2009.03.006.
    1. Calder PC. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol Nutr Food Res. 2012;56(7):1073–80. doi: 10.1002/mnfr.201100710.
    1. Rogers LK, Graf AE, Bhatia A, Leonhart KL, Oza-Frank R. Associations between maternal and infant morbidities and sRAGE within the first week of life in extremely preterm infants. PLoS One. 2013;8(12):e82537. doi: 10.1371/journal.pone.0082537.
    1. Rogers LK, Valentine CJ, Keim SA. DHA supplementation: current implications in pregnancy and childhood. Pharmacol Res. 2013;70(1):13–9. doi: 10.1016/j.phrs.2012.12.003.
    1. Matesanz N, Park G, McAllister H, et al. Docosahexaenoic acid improves the nitroso-redox balance and reduces VEGF-mediated angiogenic signaling in microvascular endothelial cells. Invest Ophthalmol Vis Sci. 2010;51(12):6815–25. doi: 10.1167/iovs.10-5339.
    1. Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–35. doi: 10.1056/NEJMra0904308.
    1. Calder PC. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Essent Fat Acids. 2007;77(5–6):327–35. doi: 10.1016/j.plefa.2007.10.015.
    1. Lindstrom TM, Bennett PR. The role of nuclear factor kappa B in human labour. Reproduction (Cambridge, England) 2005;130(5):569–81. doi: 10.1530/rep.1.00197.
    1. Jung SB, Kwon SK, Kwon M, et al. Docosahexaenoic acid improves vascular function via up-regulation of SIRT1 expression in endothelial cells. Biochem Biophys Res Commun. 2013;437(1):114–9. doi: 10.1016/j.bbrc.2013.06.049.
    1. Xue B, Yang Z, Wang X, Shi H. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLoS One. 2012;7(10):e45990. doi: 10.1371/journal.pone.0045990.
    1. Kim PY, Zhong M, Kim YS, Sanborn BM, Allen KG. Long chain polyunsaturated fatty acids alter oxytocin signaling and receptor density in cultured pregnant human myometrial smooth muscle cells. PLoS One. 2012;7(7):e41708. doi: 10.1371/journal.pone.0041708.
    1. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev. 2005;45(5):559–79. doi: 10.1051/rnd:2005046.
    1. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2(3):355–74. doi: 10.3390/nu2030355.
    1. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 2003;278(17):14677–87. doi: 10.1074/jbc.M300218200.
    1. Serhan CN, Hong S, Gronert K, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196(8):1025–37. doi: 10.1084/jem.20020760.
    1. Maskrey BH, Megson IL, Rossi AG, Whitfield PD. Emerging importance of omega-3 fatty acids in the innate immune response: molecular mechanisms and lipidomic strategies for their analysis. Mol Nutr Food Res. 2013;57(8):1390–400. doi: 10.1002/mnfr.201200723.
    1. Serhan CN, Dalli J, Karamnov S, et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 2012;26(4):1755–65. doi: 10.1096/fj.11-201442.
    1. Karim SM. Prostaglandins as abortifacients. N Engl J Med. 1971;285(27):1534–5. doi: 10.1056/NEJM197112302852712.
    1. Norwitz ER, Robinson JN, Challis JR. The control of labor. N Engl J Med. 1999;341(9):660–6. doi: 10.1056/NEJM199908263410906.
    1. Pietrantoni E, Del Chierico F, Rigon G, et al. Docosahexaenoic Acid Supplementation during Pregnancy: A Potential Tool to Prevent Membrane Rupture and Preterm Labor. Int J Mol Sci. 2014;15(5):8024–36. doi: 10.3390/ijms15058024.
    1. Velten M, Britt RD, Jr, Heyob KM, Tipple TE, Rogers LK. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. J Nutr. 2014;144(3):258–66. doi: 10.3945/jn.113.179259.
    1. Bastek JA, Brown AG, Foreman MN, et al. The soluble receptor for advanced glycation end products can prospectively identify patients at greatest risk for preterm birth. J Matern Fetal Neonatal Med. 2012;25(9):1762–8. doi: 10.3109/14767058.2012.663825.
    1. Simopoulos AP, Leaf A, Salem N., Jr Workshop statement on the essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot Essent Fat Acids. 2000;63(3):119–21. doi: 10.1054/plef.2000.0176.
    1. Fats and oils in human nutrition Report of a joint expert consultation. Food and Agriculture Organization of the United Nations and the World Health Organization. FAO Food Nutr Pap. 1994;57:i–xix.
    1. Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98(5):873–7. doi: 10.1017/S0007114507764747.
    1. Smuts CM, Borod E, Peeples JM, Carlson SE. High-DHA eggs: feasibility as a means to enhance circulating DHA in mother and infant. Lipids. 2003;38(4):407–14. doi: 10.1007/s11745-003-1076-y.
    1. Ramakrishnan U, Stein AD, Parra-Cabrera S, et al. Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico. Food Nutr Bull. 2010;31(2 Suppl):S108–16. doi: 10.1177/15648265100312S203.
    1. Mulder KA, King DJ, Innis SM. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS One. 2014;9(1):e83764. doi: 10.1371/journal.pone.0083764.
    1. DeFranco EA, O’Brien JM, Adair CD, et al. Vaginal progesterone is associated with a decrease in risk for early preterm birth and improved neonatal outcome in women with a short cervix: a secondary analysis from a randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2007;30(5):697–705. doi: 10.1002/uog.5159.
    1. Iams JD. Identification of candidates for progesterone: why, who, how, and when? Obstet Gynecol. 2014;123(6):1317–26. doi: 10.1097/AOG.0000000000000276.
    1. Klebanoff MA, Harper M, Lai Y, et al. Fish consumption, erythrocyte fatty acids, and preterm birth. Obstet Gynecol. 2011;117(5):1071–7. doi: 10.1097/AOG.0b013e31821645dc.
    1. Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Committee opinion no 611: method for estimating due date. Obstet Gynecol. 2014;124(4):863–6.
    1. McIIwain J. Data Standards Harmonization: A look at the past, present, and future of interoperability across the clinical research spectrum. Applied Clinical Trials Online: Advanstar Communications. 2010. . Accessed 28 May 2014.
    1. Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Kuratko C. Food-frequency questionnaire for assessing long-chain omega-3 fatty-acid intake: Re: Assessing long-chain omega-3 polyunsaturated fatty acids: a tailored food-frequency questionnaire is better. Nutr (Burbank, Los Angeles County, Calif) 2013;29(5):807–8. doi: 10.1016/j.nut.2012.10.013.
    1. International Conference of Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Guidelines for Good Clinical Practice. 1996. .
    1. Berry S, Carlin BP, Lee JJ, Muller P. Bayesian Adaptive Methods for Clinical Trials. Boca Raton: CRC Press; 2011.
    1. Patient Centered Outcomes Research Instistitue . PCORI Methodology Standards. 2012.

Source: PubMed

3
Suscribir