Memory Function and Brain Functional Connectivity Adaptations Following Multiple-Modality Exercise and Mind-Motor Training in Older Adults at Risk of Dementia: An Exploratory Sub-Study

Narlon C Boa Sorte Silva, Lindsay S Nagamatsu, Dawn P Gill, Adrian M Owen, Robert J Petrella, Narlon C Boa Sorte Silva, Lindsay S Nagamatsu, Dawn P Gill, Adrian M Owen, Robert J Petrella

Abstract

Background: Multiple-modality exercise improves brain function. However, whether task-based brain functional connectivity (FC) following exercise suggests adaptations in preferential brain regions is unclear. The objective of this study was to explore memory function and task-related FC changes following multiple-modality exercise and mind-motor training in older adults with subjective cognitive complaints.

Methods: We performed secondary analysis of memory function data in older adults [n = 127, mean age 67.5 (7.3) years, 71% women] randomized to an exercise intervention comprised of 45 min of multiple-modality exercise with additional 15 min of mind-motor training (M4 group, n = 63) or an active control group (M2 group, n = 64). In total, both groups exercised for 60 min/day, 3 days/week, for 24 weeks. We then conducted exploratory analyses of functional magnetic resonance imaging (fMRI) data collected from a sample of participants from the M4 group [n = 9, mean age 67.8 (8.8) years, 8 women] who completed baseline and follow-up task-based fMRI assessment. Four computer-based memory tasks from the Cambridge Brain Sciences cognitive battery (i.e. Monkey Ladder, Spatial Span, Digit Span, Paired Associates) were employed, and participants underwent 5 min of continuous fMRI data collection while completing the tasks. Behavioral data were analyzed using linear mixed models for repeated measures and paired-samples t-test. All fMRI data were analyzed using group-level independent component analysis and dual regression procedures, correcting for voxel-wise comparisons.

Results: Our findings indicated that the M4 group showed greater improvements in the Paired Associates tasks compared to the M2 group at 24 weeks [mean difference: 0.47, 95% confidence interval (CI): 0.08 to 0.86, p = 0.019]. For our fMRI analysis, dual regression revealed significant decrease in FC co-activation in the right precentral/postcentral gyri after the exercise program during the Spatial Span task (corrected p = 0.008), although there was no change in the behavioral task performance. Only trends for changes in FC were found for the other tasks (all corrected p < 0.09). In addition, for the Paired Associates task, there was a trend for increased co-activation in the right temporal lobe (Brodmann Area = 38, corrected p = 0.07), and left middle frontal temporal gyrus (corrected p = 0.06). Post hoc analysis exploring voxel FC within each group spatial map confirmed FC activation trends observed from dual regression.

Conclusion: Our findings suggest that multiple modality exercise with mind-motor training resulted in greater improvements in memory compared to an active control group. There were divergent FC adaptations including significant decreased co-activation in the precentral/postcentral gyri during the Spatial Span task. Borderline significant changes during the Paired Associates tasks in FC provided insight into the potential of our intervention to promote improvements in visuospatial memory and impart FC adaptations in brain regions relevant to Alzheimer's disease risk.

Clinical trial registration: The trial was registered in ClinicalTrials.gov in April 2014, Identifier: NCT02136368.

Keywords: cognitive training; exercise; functional connectivity; functional magnetic resonance imaging; memory; mind–motor; multiple-modality; older adults.

Copyright © 2020 Boa Sorte Silva, Nagamatsu, Gill, Owen and Petrella.

Figures

FIGURE 1
FIGURE 1
Participants performing stepping patterns during a square-stepping exercise session.
FIGURE 2
FIGURE 2
fMRI data analysis pipeline.
FIGURE 3
FIGURE 3
(A–D) Changes within group during Spatial Span task. In red–yellow contrast are Spatial Span-independent components 16 (A), 06 (B), 23 (C), and 30 (D). In dark–light green are regions with changes in group-level spatial map co-activation after the exercise program (green arrows).
FIGURE 4
FIGURE 4
(A,B) Changes within group during the Digit Span task. In red–yellow contrast are Digit Span-independent components 06 (A) and 08 (B). In dark–light green are regions with changes in group-level spatial map co-activation after the exercise program (green arrows).
FIGURE 5
FIGURE 5
(A,B) Changes within group during the Paired Associates task. In red–yellow contrast are IC15 (A) and IC08 (B). In dark–light green are regions of decreased co-activation after the exercise program (green arrows).
FIGURE 6
FIGURE 6
(A–C) Changes overtime in the average strength of functional connectivity within each group-level spatial maps for each task that showed significant changes from baseline to 24 weeks in the main analysis. Data are presented as mean difference from baseline to 24 weeks and associated confidence interval, along with p-values for significant changes. SS, Spatial Span-independent components; DS, Digit Span-independent components; PA, Paired Associates-independent components.
FIGURE 7
FIGURE 7
(A–C) Changes overtime in the average strength of functional connectivity for the specific region where changes from baseline to 24 weeks in group-level spatial map co-activation were observed. Graph A illustrates changes in the left frontal orbital cortex (MNI: –36, 27, –22) for SS06; right precentral/postcentral gyri (MNI: 36, –22, 58) for SS16, left frontal lobule/superior frontal gyrus (MNI: –18, 42, 31, BA 9) for SS23, and left occipital fusiform gyrus/lateral occipital cortex (–40, –74, –16, BA 19) for SS30. Graph B illustrates changes in the left occipital fusiform gyrus (MNI: –40, –68, –22) for DS06 and left inferior temporal gyrus (MNI: –48, –10, –32) for DS08. Graph C illustrates changes in the right temporal lobe (MNI: 46, 18, –40, BA 38) for PA15 and left middle temporal gyrus (MNI: –60, –32, –8) for PA34. Data are presented as mean difference from baseline to 24 weeks and associated confidence interval, along with p-values for significant changes. Note: SS, Spatial Span; DS, Digit Span; PA, Paired Associates-independent components; MNI, Montreal Neurological Institute coordinates; BA, Brodmann area.

References

    1. Abbott R. D., White L. R., Ross G. W., Masaki K. H., Curb J. D., Petrovitch H. (2004). Walking and dementia in physically capable elderly men. J. Am. Med. Assoc. 292 1447–1453. 10.1001/jama.292.12.1447
    1. Alvarez P., Squire L. R. (1994). Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl. Acad. Sci. U.S.A. 91 7041–7045. 10.1073/pnas.91.15.7041
    1. Alzheimer Society of Canada, (2010). “Rising TIDE: the impact of dementia on canadian society,” in Executive Summary. 1–24. Toronto: Alzheimer Society of Canada.
    1. Barnes D., Santos-Modesitt W., Poelke G., Kramer A., Castro C., Middleton L. (2013). The mental activity and exercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern. Med. 173 797–804. 10.1001/jamainternmed.2013.189
    1. Barnes D. E., Yaffe K., Satariano W. A., Tager I. B. (2003). A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 51 459–465. 10.1046/j.1532-5415.2003.51153.x
    1. Beckmann C. F., Smith S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23 137–152. 10.1109/TMI.2003.822821
    1. Biswal B. B., Mennes M., Zuo X.-N., Gohel S., Kelly C., Smith S. M., et al. (2010). Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107 4734–4739. 10.1073/pnas.0911855107
    1. Boa Sorte Silva N. C., Gill D. P., Gregory M. A., Bocti J., Petrella R. J. (2018a). Multiple-modality exercise and mind-motor training to improve mobility in older adults: a randomized controlled trial. Exp. Gerontol. 103 17–26. 10.1016/j.exger.2017.12.011
    1. Boa Sorte Silva N. C., Gill D. P., Owen A. M., Liu-Ambrose T., Hachinski V., Shigematsu R., et al. (2018b). Cognitive changes following multiple-modality exercise and mind-motor training in older adults with subjective cognitive complaints: the M4 study. PLoS One 13: e0196356. 10.1371/journal.pone.0196356
    1. Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. 3 186–191. 10.1016/j.jalz.2007.04.381
    1. Buckley R. F., Ellis K. A., Ames D., Rowe C. C., Lautenschlager N. T., Maruff P., et al. (2015). Phenomenological characterization of memory complaints in preclinical and prodromal Alzheimer’s disease. Neuropsychology 29 571–581. 10.1037/neu0000156
    1. Buckner R. L., Krienen F. M., Yeo B. T. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 16 832–837. 10.1038/nn.3423
    1. Buckner R. L., Sepulcre J., Talukdar T., Krienen F. M., Liu H., Hedden T., et al. (2009). cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s Disease. J. Neurosci. 29 1860–1873. 10.1523/jneurosci.5062-08.2009
    1. Bugg J. M., Head D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiol. Aging 32 506–514. 10.1016/j.neurobiolaging.2009.03.008
    1. Bugg J. M., Shah K., Villareal D. T., Head D. (2012). Cognitive and neural correlates of aerobic fitness in obese older adults. Exp. Aging Res. 38 131–145. 10.1080/0361073X.2012.659995
    1. Callisaya M. L., Daly R. M., Sharman J. E., Bruce D., Davis T. M. E., Greenaway T., et al. (2017). Feasibility of a multi-modal exercise program on cognition in older adults with Type 2 diabetes - a pilot randomised controlled trial. BMC Geriatr. 17:237. 10.1186/s12877-017-0635-9
    1. Chen S. T., Siddarth P., Ercoli L. M., Merrill D. A., Torres-Gil F., Small G. W. (2014). Modifiable risk factors for Alzheimer disease and subjective memory impairment across age groups. PLoS One 9:e98630. 10.1371/journal.pone.0098630
    1. Chirles T. J., Reiter K., Weiss L. R., Alfini A. J., Nielson K. A., Smith J. C. (2017). Exercise training and functional connectivity changes in mild cognitive impairment and healthy elders. J. Alzheimer’s Dis. 57 845–856. 10.3233/JAD-161151
    1. Chodzko-Zajko W. J., Proctor D. N., Fiatarone Singh M. A., Minson C. T., Nigg C. R., Salem G. J., et al. (2009). Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 41 1510–1530. 10.1249/MSS.0b013e3181a0c95c
    1. De Rover M., Pironti V. A., McCabe J. A., Acosta-Cabronero J., Arana F. S., Morein-Zamir S., et al. (2011). Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 49 2060–2070. 10.1016/j.neuropsychologia.2011.03.037
    1. Dosenbach N. U. F., Miezin F. M., Raichle M. E., Snyder A. Z., Vincent J. L., Wenger K. K., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. U.S.A. 104 11073–11078. 10.1073/pnas.0704320104
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108 3017–3022. 10.1073/pnas.1015950108
    1. Ferreira A. F. B., Real C. C., Rodrigues A. C., Alves A. S., Britto L. R. G. (2010). Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain Res. 1361 31–42. 10.1016/j.brainres.2010.09.045
    1. Fitzmaurice G. M., Laird N. M., Ware J. H. (2011). Applied Longitudinal Analysis, 2nd Edn Hoboken, NJ: John Wiley & Sons, 10.1198/jasa.2005.s24
    1. Garcia P. C., Real C. C., Ferreira A. F. B., Alouche S. R., Britto L. R. G., Pires R. S. (2012). Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain Res. 1456 36–48. 10.1016/j.brainres.2012.03.059
    1. Gill D. P., Gregory M. A., Zou G., Liu-Ambrose T., Shigematsu R., Hachinski V., et al. (2016). The healthy mind, healthy mobility trial: a novel exercise program for older adults. Med. Sci. Sports Exerc. 48 297−306. 10.1249/MSS.0000000000000758
    1. Glahn D. C., Winkler A. M., Kochunov P., Almasy L., Duggirala R., Carless M. A., et al. (2010). Genetic control over the resting brain. Proc. Natl. Acad. Sci. U.S.A. 107 1223–1228. 10.1073/pnas.0909969107
    1. Gould R. L., Brown R. G., Owen A. M., Bullmore E. T., Williams S. C. R., Howard R. J. (2005). Functional neuroanatomy of successful paired associate learning in Alzheimer’s disease. Am. J. Psychiatry 162 2049–2060. 10.1176/appi.ajp.162.11.2049
    1. Gregory M. A., Gill D. P., Shellington E. M., Liu-Ambrose T., Shigematsu R., Zou G., et al. (2016). Group-based exercise and cognitive-physical training in older adults with self-reported cognitive complaints: the multiple-modality. Mind-Motor (M4) study protocol. BMC Geriatr. 16:17. 10.1186/s12877-016-0190-9
    1. Greicius M. D., Srivastava G., Reiss A. L., Menon V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101 4637–4642. 10.1073/pnas.0308627101
    1. Griffanti L., Douaud G., Bijsterbosch J., Evangelisti S., Alfaro-Almagro F., Glasser M. F., et al. (2017). Hand classification of fMRI ICA noise components. Neuroimage 154 188–205. 10.1016/j.neuroimage.2016.12.036
    1. Hampshire A., Highfield R. R., Parkin B. L., Owen A. M. (2012). Fractionating human intelligence. Neuron 76 1225–1237. 10.1016/j.neuron.2012.06.022
    1. Hampson M., Driesen N. R., Skudlarski P., Gore J. C., Constable R. T. (2006). Brain connectivity related to working memory performance. J. Neurosci. 26 13338–13343. 10.1523/jneurosci.3408-06.2006
    1. Heath M., Shellington E., Titheridge S., Gill D. P. D., Petrella R. J. (2017). A 24-week multi-modality exercise program improves executive control in older adults with a self-reported cognitive complaint: evidence from the antisaccade task. J. Alzheimer’s Dis. 56 167–183. 10.3233/JAD-160627
    1. Huettel S. A. (2012). Event-related fMRI in cognition. Neuroimage 62 1152–1156. 10.1016/j.neuroimage.2011.08.113
    1. Hyvärinen A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10 626–634. 10.1109/72.761722
    1. Inoue S., Matsuzawa T. (2007). Working memory of numerals in chimpanzees. Curr. Biol. 17 R1004–R1005. 10.1016/j.cub.2007.10.027
    1. Jeneson A., Squire L. R. (2011). Working memory, long-term memory, and medial temporal lobe function. Learn. Mem. 19 15–25. 10.1101/lm.024018.111.19
    1. Jenkinson M., Bannister P., Brady M., Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17 825–841. 10.1016/S1053-8119(02)91132-8
    1. Jenkinson M., Smith S. (2001). A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5 143–156. 10.1016/S1361-8415(01)00036-6
    1. Jessen F., Amariglio R. E., Van Boxtel M., Breteler M., Ceccaldi M., Chételat G., et al. (2014a). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 10 844–852. 10.1016/j.jalz.2014.01.001
    1. Jessen F., Wolfsgruber S., Wiese B., Bickel H., Mösch E., Kaduszkiewicz H., et al. (2014b). AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s Dement. 10 76–83. 10.1016/j.jalz.2012.09.017
    1. Ji L., Zhang H., Potter G. G., Zang Y. F., Steffens D. C., Guo H., et al. (2017). Multiple neuroimaging measures for examining exercise-induced neuroplasticity in older adults: a quasi-experimental study. Front. Aging Neurosci. 9:102. 10.3389/fnagi.2017.00102
    1. Kessels R. P. C., Van Zandvoort M. J. E., Postma A., Kappelle L. J., De Haan E. H. F. (2000). The corsi block-tapping task: standardization and normative data. Appl. Neuropsychol. 7 252–258. 10.1207/S15324826AN0704_8
    1. Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4:863. 10.3389/fpsyg.2013.00863
    1. Lautenschlager N. T., Cox K. L., Flicker L., Foster J. K., Bockxmeer F. M., Van Xiao J., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer Disease. JAMA J. Am. Med. Assoc. 300 1027–1037. 10.1001/jama.300.9.1027
    1. Livingston G., Sommerlad A., Orgeta V., Costafreda S. G., Huntley J., Ames D., et al. (2017). Dementia prevention, intervention, and care. Lancet 390 2673–2734. 10.1016/S0140-6736(17)31363-6
    1. Lourida I., Hannon E., Littlejohns T. J., Langa K. M., Hyppönen E., Kuźma E., et al. (2019). Association of lifestyle and genetic risk with incidence of dementia. JAMA J. Am. Med. Assoc. 322:430. 10.1001/jama.2019.9879
    1. Mangialasche F., Solomon A., Winblad B., Mecocci P., Kivipelto M. (2010). Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 9 702–716. 10.1016/S1474-4422(10)70119-8
    1. Minka T. P. (2000). Automatic Choice of Dimensionality for PCA. Technical Report 514 London: MIT Media Lab Vision and Modeling Group.
    1. Nasreddine Z. S., Phillips N. A., Bedirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 695–699. 10.1111/j.1532-5415.2005.53221.x
    1. Ngandu T., Lehtisalo J., Solomon A., Levalahti E., Ahtiluoto S., Antikainen R., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385 2255–2263. 10.1016/S0140-6736(15)60461-5
    1. Nickerson L. D., Smith S. M., Öngür D., Beckmann C. F. (2017). Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Front. Neurosci. 11:115. 10.3389/fnins.2017.00115
    1. Owen A. M., Hampshire A., Grahn J. A., Stenton R., Dajani S., Burns A. S., et al. (2010). Putting brain training to the test. Nature 465 775–778. 10.1038/nature09042
    1. Pettigrew C., Soldan A., Sloane K., Cai Q., Wang J., Wang M. C., et al. (2017). Progressive medial temporal lobe atrophy during preclinical Alzheimer’s disease. NeuroImage Clin. 16 439–446. 10.1016/j.nicl.2017.08.022
    1. Poldrack R. A., Fletcher P. C., Henson R. N., Worsley K. J., Brett M., Nichols T. E. (2008). Guidelines for reporting an fMRI study. Neuroimage 40 409–414. 10.1016/j.neuroimage.2007.11.048
    1. Rajab A. S., Crane D. E., Middleton L. E., Robertson A. D., Hampson M., MacIntosh B. J. (2014). A single session of exercise increases connectivity in sensorimotor-related brain networks: a resting-state fMRI study in young healthy adults. Front. Hum. Neurosci. 8:625. 10.3389/fnhum.2014.00625
    1. Rehfeld K., Lüders A., Hökelmann A., Lessmann V., Kaufmann J., Brigadski T., et al. (2018). Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS One 13:e0196636. 10.1371/journal.pone.0196636
    1. Rogers B. P., Morgan V. L., Newton A. T., Gore J. C. (2007). Assessing functional connectivity in the human brain by fMRI. Magn. Reson. Imaging 25 1347–1357. 10.1016/j.mri.2007.03.007
    1. Schwindt G. C., Chaudhary S., Crane D., Ganda A., Masellis M., Grady C. L., et al. (2013). Modulation of the default-mode network between rest and task in Alzheimer’s disease. Cereb. Cortex 23 1685–1694. 10.1093/cercor/bhs160
    1. Shigematsu R. (2014). Effects of exercise program requiring attention, memory and imitation on cognitive function in elderly persons: a non-randomized pilot study. J. Gerontol. Geriatr. Res. 03 1–6. 10.4172/2167-7182.1000147
    1. Shigematsu R., Okura T., Nakagaichi M., Tanaka K., Sakai T., Kitazumi S., et al. (2008). Square-stepping exercise and fall risk factors in older adults: a single-blind, randomized controlled trial. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 63 76–82. 10.1093/gerona/63.1.76
    1. Shirer W. R., Ryali S., Rykhlevskaia E., Menon V., Greicius M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22 158–165. 10.1093/cercor/bhr099
    1. Slot R. E. R., Sikkes S. A. M., Berkhof J., Brodaty H., Buckley R., Cavedo E., et al. (2018). Subjective cognitive decline and rates of incident Alzheimer’s disease and non-Alzheimer’s disease dementia. Alzheimers. Dement 15 465–476. 10.1016/j.jalz.2018.10.003
    1. Song Z., Insel P. S., Buckley S., Yohannes S., Mezher A., Simonson A., et al. (2015). Brain amyloid- burden is associated with disruption of intrinsic functional connectivity within the medial temporal lobe in cognitively normal elderly. J. Neurosci. 35 3240–3247. 10.1523/jneurosci.2092-14.2015
    1. Sorg C., Riedl V., Muhlau M., Calhoun V. D., Eichele T., Laer L., et al. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 104 18760–18765. 10.1073/pnas.0708803104
    1. Sperling R. A., Aisen P. S., Beckett L. A., Bennett D. A., Craft S., Fagan A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers. Dement. 7 280–292. 10.1016/j.jalz.2011.03.003
    1. Stuckey M. I., Knight E., Petrella R. J. (2012). the step test and exercise prescription tool in primary care: a critical review. Crit. Rev. Phys. Rehabil. Med. 24 109–123. 10.1615/critrevphysrehabilmed.2013006823
    1. Swain R. A., Harris A. B., Wiener E. C., Dutka M. V., Morris H. D., Theien B. E., et al. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117 1037–1046. 10.1016/S0306-4522(02)00664-4
    1. Taylor K. I., Probst A. (2008). Anatomic localization of the transentorhinal region of the perirhinal cortex. Neurobiol. Aging 29 1591–1596. 10.1016/j.neurobiolaging.2007.03.024
    1. Teixeira C. V. L., Gobbi S., Pereira J. R., Vital T. M., Hernandéz S. S. S., Shigematsu R., et al. (2013). Effects of square-stepping exercise on cognitive functions of older people. Psychogeriatrics 13 148–156. 10.1111/psyg.12017
    1. Teixeira C. V. L., Ribeiro de Rezende T. J., Weiler M., Magalhães T. N. C., Carletti-Cassani A. F. M. K., Silva T. Q. A. C., et al. (2018). Cognitive and structural cerebral changes in amnestic mild cognitive impairment due to Alzheimer’s disease after multicomponent training. Alzheimer’s Dement. Transl. Res. Clin. Interv. 4 473–480. 10.1016/j.trci.2018.02.003
    1. The Alzheimer Society of Canada in collaboration with the Public Health Agency of Canada, (2016). Prevelance and Monetary Costs of Demetia in Canada. 70. Available at:
    1. Voss M. W., Heo S., Prakash R. S., Erickson K. I., Alves H., Chaddock L., et al. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum. Brain Mapp. 34 2972–2985. 10.1002/hbm.22119
    1. Voss M. W., Prakash R. S., Erickson K. I., Basak C., Chaddock L., Kim J. S., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2:32. 10.3389/fnagi.2010.00032
    1. Wechsler D. (1981). The psychometric tradition: developing the wechsler adult intelligence scale. Contemp. Educ. Psychol. 6 82–85. 10.1016/0361-476X(81)90035-7
    1. Weuve J., Kang J. H., Manson J. E., Breteler M. M. B., Ware J. H., Grodstein F. (2004). Physical activity, including walking, and cognitive function in older women. JAMA 292 1454–1461. 10.1001/jama.292.12.1454

Source: PubMed

3
Suscribir