Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review

Adam J Shapiro, Maimoona A Zariwala, Thomas Ferkol, Stephanie D Davis, Scott D Sagel, Sharon D Dell, Margaret Rosenfeld, Kenneth N Olivier, Carlos Milla, Sam J Daniel, Adam J Kimple, Michele Manion, Michael R Knowles, Margaret W Leigh, Genetic Disorders of Mucociliary Clearance Consortium, Lou Epperson, Jane Quante, Carol Kopecky, Shelley Mann, Donna Parker, Jacquelyn Zirbes, Robert Johnson, Melody Mikki, Hoon Chang, Rosalie Helfrich, Adam J Shapiro, Maimoona A Zariwala, Thomas Ferkol, Stephanie D Davis, Scott D Sagel, Sharon D Dell, Margaret Rosenfeld, Kenneth N Olivier, Carlos Milla, Sam J Daniel, Adam J Kimple, Michele Manion, Michael R Knowles, Margaret W Leigh, Genetic Disorders of Mucociliary Clearance Consortium, Lou Epperson, Jane Quante, Carol Kopecky, Shelley Mann, Donna Parker, Jacquelyn Zirbes, Robert Johnson, Melody Mikki, Hoon Chang, Rosalie Helfrich

Abstract

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, rare lung disease resulting in chronic oto-sino-pulmonary disease in both children and adults. Many physicians incorrectly diagnose PCD or eliminate PCD from their differential diagnosis due to inexperience with diagnostic testing methods. Thus far, all therapies used for PCD are unproven through large clinical trials. This review article outlines consensus recommendations from PCD physicians in North America who have been engaged in a PCD centered research consortium for the last 10 years. These recommendations have been adopted by the governing board of the PCD Foundation to provide guidance for PCD clinical centers for diagnostic testing, monitoring, and appropriate short and long-term therapeutics in PCD patients.

Keywords: PCD Foundation; PCD, kartagener; consensus statement; primary ciliary dyskinesia.

© 2015 The Authors. Pediatric Pulmonology Published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Examples of various laterality defects on radiology imaging in PCD. Different situs arrangements found in PCD, including (A) a participant with situs solitus, or normal organ arrangement, with left cardiac apex, left‐sided stomach bubble, and right‐sided liver; (B) a patient with situs inversus totalis (SIT), or mirror‐image organ arrangement, with right cardiac apex, right‐sided stomach bubble, and left‐sided liver; (C) a patient with situs ambiguus (SA), with left cardiac apex, right‐sided stomach bubble, right‐sided liver, and intestinal malrotation; This patient also had right‐sided polysplenia visualized on a CT scan. C, cardiac apex; S, stomach; L, liver; M, intestinal malrotation. Reproduced with permission from CHEST.19
Figure 2
Figure 2
Electron microscopy findings in primary ciliary dyskinesia. Diagnostic ciliary electron microscopy findings in primary ciliary dyskinesia. Normal ciliary ultrastructure (A), Outer and inner dynein arm defect (B), Outer dynein arm defect (C), Inner dynein arm defect alone* (D), Inner dynein arm defect with microtubule disorganization (E). * Inner dynein arm defects alone are quite rare as a cause of PCD and usually due to secondary artifact. Adapted from Leigh et al.164
Figure 3
Figure 3
Nasal nitric oxide in primary ciliary dyskinesia and healthy controls. Scatter plot of nasal nitric oxide (nNO) values (linear scale; nl/min) versus age for individuals with primary ciliary dyskinesia (PCD, with cystic fibrosis ruled out) and healthy control subjects with nNO cutoff of 77 nl/min. All nNO values from healthy control subjects (open circles) were well above the cutoff of 77 nl/min and most of the nNO measurements in subjects with PCD and ciliary ultrastructure defects (open triangles, single measurements; solid triangles, repeated measurements) were below the cutoff. Findings are similar in disease controls, including asthma and COPD (data not shown). The three solid triangles above the cutoff are repeated measurements in the same individual with PCD. Reproduced with permission from the American Thoracic Society. Copyright © 2015 American Thoracic Society. The Annals of the American Thoracic Society is an official journal of the American Thoracic Society.18

References

    1. Davis SD, Ferkol TW, Rosenfeld M, Lee HS, Dell SD, Sagel SD, Milla C, Zariwala MA, Pittman JE, Shapiro AJ, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 2015; 191:316–324.
    1. Magnin ML, Cros P, Beydon N, Mahloul M, Tamalet A, Escudier E, Clement A, Le Pointe HD, Blanchon S. Longitudinal lung function and structural changes in children with primary ciliary dyskinesia. Pediatr Pulmonol 2012; 47:816–825.
    1. Marthin JK, Petersen N, Skovgaard LT, Nielsen KG. Lung function in patients with primary ciliary dyskinesia: a cross‐sectional and 3‐decade longitudinal study. Am J Respir Crit Care Med 2010; 181:1262–1268.
    1. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med 2013; 188:913–922.
    1. Leigh MW, O'Callaghan C, Knowles MR. The challenges of diagnosing primary ciliary dyskinesia. Proc Am Thorac Soc 2011; 8:434–437.
    1. Hosie P, Fitzgerald DA, Jaffe A, Birman CS, Morgan L. Primary ciliary dyskinesia: overlooked and undertreated in children. J Paediatr Child Health 2014; 50:952–958.
    1. Lucas JS, Leigh MW. Diagnosis of primary ciliary dyskinesia: searching for a gold standard. Eur Respir J 2014; 44:1418–1422.
    1. Zariwala MA, Knowles MR, Leigh MW. Primary ciliary dyskinesia. 2007 Jan24 [updated 2015 Sep 3] In: Pagon RA, Adam MP, Amemiya A, Bird TD, et al., editors. GeneReviews™. Seattle (WA): University of Washington, Seattle; 1993–2015. Available from: .)
    1. Boon M, Jorissen M, Proesmans M, De Boeck K. Primary ciliary dyskinesia, an orphan disease. Eur J Pediatr 2013; 172:151–162.
    1. Knowles MR, Leigh MW, Carson JL, Davis SD, Dell SD, Ferkol TW, Olivier KN, Sagel SD, Rosenfeld M, Burns KA, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax 2012; 67:433–441.
    1. O'Callaghan C, Rutman A, Williams GM, Hirst RA. Inner dynein arm defects causing primary ciliary dyskinesia: repeat testing required. Eur Respir J 2011; 38:603–607.
    1. Kim RH, A Hall D, Cutz E, Knowles MR, Nelligan KA, Nykamp K, Zariwala MA, Dell SD. The role of molecular genetic analysis in the diagnosis of primary ciliary dyskinesia. Ann Am Thorac Soc 2014; 11:351–359.
    1. Berg JS, Evans JP, Leigh MW, Omran H, Bizon C, Mane K, Knowles MR, Weck KE, Zariwala MA. Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: implications for application to clinical testing. Genet Med 2011; 13:218–229.
    1. Jackson CL, Goggin PM, Lucas JS. Ciliary beat pattern analysis below 37 degrees C may increase risk of primary ciliary dyskinesia misdiagnosis. Chest 2012; 142:543–544; author reply 544–5.
    1. Hirst RA, Rutman A, Williams G, O'Callaghan C. Ciliated air‐liquid cultures as an aid to diagnostic testing of primary ciliary dyskinesia. Chest 2010; 138:1441–1447.
    1. Thomas B, Rutman A, O'Callaghan C. Disrupted ciliated epithelium shows slower ciliary beat frequency and increased dyskinesia. Eur Respir J 2009; 34:401–404.
    1. Mateos‐Corral D, Coombs R, Grasemann H, Ratjen F, Dell SD. Diagnostic value of nasal nitric oxide measured with non‐velum closure techniques for children with primary ciliary dyskinesia. J Pediatr 2011; 159:420–424.
    1. Leigh MW, Hazucha MJ, Chawla KK, Baker BR, Shapiro AJ, Brown DE, Lavange LM, Horton BJ, Qaqish B, Carson JL, et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc 2013; 10:574–581.
    1. Shapiro AJ, Davis SD, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, Sagel SD, Milla C, Zariwala MA, Wolf W, et al. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 2014. 146:1176–86.
    1. Shapiro AJ, Tolleson‐Rinehart S, Zariwala MA, Knowles MR, Leigh MW. The prevalence of clinical features associated with primary ciliary dyskinesia in a heterotaxy population: results of a web‐based survey. Cardiol Young 2014;25:752–9.
    1. Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, Clément A, Geremek M, Delaisi B, Bridoux AM, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 2006; 43:326–333.
    1. Shapiro AJ, Weck KE, Chao KC, Rosenfeld M, Nygren AO, Knowles MR, Leigh MW, Zariwala MA. Cri du chat syndrome and primary ciliary dyskinesia: a common genetic cause on chromosome 5p. J Pediatr 2014; 165:858–861.
    1. Lucas JS, Carroll M. Primary ciliary dyskinesia and cystic fibrosis: different diseases require different treatment. Chest 2014; 145:674–676.
    1. Cohen‐Cymberknoh M, Simanovsky N, Hiller N, Gileles Hillel A, Shoseyov D, Kerem E. Differences in disease expression between primary ciliary dyskinesia and cystic fibrosis with and without pancreatic insufficiency. Chest 2014; 145:738–744.
    1. Paff T, van der Schee MP, Daniels JM, Pals G, Postmus PE, Sterk PJ, Haarman EG. Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia. J Cyst Fibros 2013; 12:454–460.
    1. Horvath I, Loukides S, Wodehouse T, Csiszer E, Cole PJ, Kharitonov SA, Barnes PJ. Comparison of exhaled and nasal nitric oxide and exhaled carbon monoxide levels in bronchiectatic patients with and without primary ciliary dyskinesia. Thorax 2003; 58:68–72.
    1. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck‐Ytter Y, Alonso‐Coello P, Schunemann HJ, Group GW. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336:924–926.
    1. Mullowney T, Manson D, Kim R, Stephens D, Shah V, Dell S. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics 2014; 134:1160–1166.
    1. Campbell R. Managing upper respiratory tract complications of primary ciliary dyskinesia in children. Curr Opin Allergy Clin Immunol 2012; 12:32–38.
    1. Afzelius BA. A human syndrome caused by immotile cilia. Science 1976; 193:317–319.
    1. Sommer JU, Schafer K, Omran H, Olbrich H, Wallmeier J, Blum A, Hormann K, Stuck BA. ENT manifestations in patients with primary ciliary dyskinesia: prevalence and significance of otorhinolaryngologic co‐morbidities. Eur Arch Otorhinolaryngol 2011; 268:383–388.
    1. el‐Sayed Y, al‐Sarhani A, al‐Essa AR. Otological manifestations of primary ciliary dyskinesia. Clin Otolaryngol Allied Sci 1997; 22:266–270.
    1. Kennedy MP, Noone PG, Leigh MW, Zariwala MA, Minnix SL, Knowles MR, Molina PL. High‐resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol 2007; 188:1232–1238.
    1. Brown DE, Pittman JE, Leigh MW, Fordham L, Davis SD. Early lung disease in young children with primary ciliary dyskinesia. Pediatr Pulmonol 2008; 43:514–516.
    1. Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, Zariwala MA, Knowles MR. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169:459–467.
    1. Munro NC, Currie DC, Lindsay KS, Ryder TA, Rutman A, Dewar A, Greenstone MA, Hendry WF, Cole PJ. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax 1994; 49:684–687.
    1. McComb P, Langley L, Villalon M, Verdugo P. The oviductal cilia and Kartagener's syndrome. Fertil Steril 1986; 46:412–416.
    1. Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, Hazucha MJ, Carson JL, Olivier KN, Sagel SD, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 2014; 189:707–717.
    1. Olin JT, Burns K, Carson JL, Metjian H, Atkinson JJ, Davis SD, Dell SD, Ferkol TW, Milla CE, Olivier KN, et al. Diagnostic yield of nasal scrape biopsies in primary ciliary dyskinesia: a multicenter experience. Pediatr Pulmonol 2011; 46:483‐8.
    1. de Iongh RU, Rutland J. Ciliary defects in healthy subjects, bronchiectasis, and primary ciliary dyskinesia. Am J Respir Crit Care Med 1995; 151:1559–1567.
    1. Escudier E, Couprie M, Duriez B, Roudot‐Thoraval F, Millepied MC, Pruliere‐Escabasse V, Labatte L, Coste A. Computer‐assisted analysis helps detect inner dynein arm abnormalities. Am J Respir Crit Care Med 2002; 166:1257–1262.
    1. Antony D, Becker‐Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, Wilson R, Taylor‐Cox T, Dewar A, Jackson C, et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 2013; 34:462–472.
    1. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, Ybot‐Gonzalez P, Emes RD, Wilson SW, Wallis C, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central‐microtubular‐pair abnormalities. Am J Hum Genet 2009; 84:197–209.
    1. Onoufriadis A, Shoemark A, Schmidts M, Patel M, Jimenez G, Liu H, Thomas B, Dixon M, Hirst RA, Rutman A, et al. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet 2014; 23:3362–3374.
    1. Jeanson L, Copin B, Papon JF, Dastot‐Le Moal F, Duquesnoy P, Montantin G, Cadranel J, Corvol H, Coste A, Desir J, et al. RSPH3 mutations cause primary ciliary dyskinesia with central‐complex defects and a near absence of radial spokes. Am J Hum Genet 2015; 97:153‐62.
    1. Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, Ta‐shma A, Wilson KS, Bayly PV, Amirav I, Cohen‐Cymberknoh M, et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS ONE 2013; 8:e72299.
    1. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, Banki NF, Shoemark A, Burgoyne T, Al Turki S, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left‐right body asymmetry. Am J Hum Genet 2012; 91:672–684.
    1. Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, Loges NT, Pennekamp P, Lindberg S, Stenram U, et al. The nexin‐dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 2013; 45:262–268.
    1. Wallmeier J, Al‐Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, Ma L, Shamseldin HE, Olbrich H, Dougherty GW, et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 2014; 46:646–651.
    1. Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, Dougherty GW, Raidt J, Werner C, Amirav I, et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 2014; 5:4418.
    1. Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia 2015; 4:2.
    1. Marthin JK, Nielsen KG. Hand‐held tidal breathing nasal nitric oxide measurement‐a promising targeted case‐finding tool for the diagnosis of primary ciliary dyskinesia. PLoS ONE 2013; 8:e57262.
    1. Harris A, Bhullar E, Gove K, Joslin R, Pelling J, Evans HJ, Walker WT, Lucas JS. Validation of a portable nitric oxide analyzer for screening in primary ciliary dyskinesias. BMC Pulm Med 2014; 14:18.
    1. Lundberg JO, Weitzberg E, Nordvall SL, Kuylenstierna R, Lundberg JM, Alving K. Primarily nasal origin of exhaled nitric oxide and absence in Kartagener's syndrome. Eur Respir J 1994; 7:1501–1504.
    1. Collins SA, Gove K, Walker W, Lucas JS. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta‐analysis. Eur Respir J 2014; 44:1589–1599.
    1. Pifferi M, Caramella D, Cangiotti AM, Ragazzo V, Macchia P, Boner AL. Nasal nitric oxide in atypical primary ciliary dyskinesia. Chest 2007; 131:870–873.
    1. Marthin JK, Nielsen KG. Choice of nasal nitric oxide technique as first‐line test for primary ciliary dyskinesia. Eur Respir J 2011; 37:559–565.
    1. Balfour‐Lynn IM, Laverty A, Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child 1996; 75:319–322.
    1. Palm J, Lidman C, Graf P, Alving K, Lundberg J. Nasal nitric oxide is reduced in patients with HIV. Acta Otolaryngol 2000; 120:420–423.
    1. Nakano H, Ide H, Imada M, Osanai S, Takahashi T, Kikuchi K, Iwamoto J. Reduced nasal nitric oxide in diffuse panbronchiolitis. Am J Respir Crit Care Med 2000; 162:2218–2220.
    1. Arnal JF, Flores P, Rami J, Murris‐Espin M, Bremont F, Pasto IAM, Serrano E, Didier A. Nasal nitric oxide concentration in paranasal sinus inflammatory diseases. Eur Respir J 1999; 13:307–312.
    1. Stannard WA, Chilvers MA, Rutman AR, Williams CD, O'Callaghan C. Diagnostic testing of patients suspected of primary ciliary dyskinesia. Am J Respir Crit Care Med 2010; 181:307–314.
    1. Chilvers MA, McKean M, Rutman A, Myint BS, Silverman M, O'Callaghan C. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur Respir J 2001; 18:965–970.
    1. Tilley AE, Walters MS, Shaykhiev R, Crystal RG. Cilia dysfunction in lung disease. Annu Rev Physiol 2015; 77:379–406.
    1. Omran H, Loges NT. Immunofluorescence staining of ciliated respiratory epithelial cells. Methods Cell Biol 2009; 91:123–133.
    1. Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171:1343–1349.
    1. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E, Hara C, et al. Ktu/PF13 is required for cytoplasmic pre‐assembly of axonemal dyneins. Nature 2008; 456:611–616.
    1. Frommer A, Hjeij R, Loges NT, Edelbusch C, Jahnke C, Raidt J, Werner C, Wallmeier J, Grosse‐Onnebrink J, Olbrich H, et al. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am J Respir Cell Mol Biol 2015. [Epub ahead of print].
    1. Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, et al. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet 2014; 95:257–274.
    1. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, Kuhl H, Baktai G, Peterffy E, Chodhari R, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 2008; 83:547–558.
    1. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, Shook B, Cantino M, Schwartz D, Jahnke C, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 2013; 45:995–1003.
    1. Knowles MR, Ostrowski LE, Loges NT, Hurd T, Leigh MW, Huang L, Wolf WE, Carson JL, Hazucha MJ, Yin W, et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet 2013; 93:711–720.
    1. Olbrich H, Horvath J, Fekete A, Loges NT, Storm van's Gravesande K, Blum A, Hormann K, Omran H. Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatr Res 2006; 59:418–422.
    1. Horani A, Brody SL, Ferkol TW. Picking up speed: advances in the genetics of primary ciliary dyskinesia. Pediatr Res 2014; 75:158–64.
    1. Prevention Genetics. 2015 April 1. Primary ciliary dyskinesia (PCD)/immotile cilia syndrome nextgen sequencing (NGS) panel. . Accessed 2015 April 1.
    1. Ambry Genetics. 2015 April 1. Primary ciliary dyskinesia testing. . Accessed 2015 April 1.
    1. Invitae Genetics. 2015 April 1. Primary ciliary dyskinesia. . Accessed 2015 April 1.
    1. Partners HealthCare. 2015 April 1. Bronchiectasis panel (17 Genes) test details. . Accessed 2015 April 1.
    1. Canciani M, Barlocco EG, Mastella G, de Santi MM, Gardi C, Lungarella G. The saccharin method for testing mucociliary function in patients suspected of having primary ciliary dyskinesia. Pediatr Pulmonol 1988; 5:210–214.
    1. Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, Olbrich H, Haffner K, Dougherty GW, Omran H, et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur Respir J 2014; 44:1579–1588.
    1. De Boeck K, Proesmans M, Mortelmans L, Van Billoen B, Willems T, Jorissen M. Mucociliary transport using 99mTc‐albumin colloid: a reliable screening test for primary ciliary dyskinesia. Thorax 2005; 60:414–417.
    1. Marthin JK, Mortensen J, Pressler T, Nielsen KG. Pulmonary radioaerosol mucociliary clearance in diagnosis of primary ciliary dyskinesia. Chest 2007; 132:966–976.
    1. Hamosh A, Corey M. Correlation between genotype and phenotype in patients with cystic fibrosis. The cystic fibrosis genotype‐phenotype consortium. N Engl J Med 1993; 329:1308–1313.
    1. Kesson AM, Kakakios A. Immunocompromised children: conditions and infectious agents. Paediatr Respir Rev 2007; 8:231–239.
    1. Boon M, Meyts I, Proesmans M, Vermeulen FL, Jorissen M, De Boeck K. Diagnostic accuracy of nitric oxide measurements to detect primary ciliary dyskinesia. Eur J Clin Invest 2014; 44:477–485.
    1. Platzker A. Gastroesophageal reflux and aspiration syndromes. In: Chernick VB, TF, Wilmott, RW, Bush, A, editor. Kendig's Disorders of the Respiratory Tract in Children (Seventh Edition) Philadelphia: Saunders Elsevier; 2006. pp 592–609.
    1. Cardasis JJ, MacMahon H, Husain AN. The spectrum of lung disease due to chronic occult aspiration. Ann Am Thorac Soc 2014; 11:865–873.
    1. Wurzel DF, Marchant JM, Yerkovich ST, Upham JW, Mackay IM, Masters IB, Chang AB. Prospective characterization of protracted bacterial bronchitis in children. Chest 2014; 145:1271–1278.
    1. Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, Jensen LR, Raynaud M, Shoichet SA, Badura M, et al. A novel X‐linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral‐facial‐digital type I syndrome. Hum Genet 2006; 120:171–178.
    1. Tosi GM, de Santi MM, Pradal U, Braggion C, Luzi P. Clinicopathologic reports, case reports, and small case series: usher syndrome type 1 associated with primary ciliary aplasia. Arch Ophthalmol 2003; 121:407–408.
    1. Bukowy‐Bieryłło Z, Ziętkiewicz E, Loges NT, Wittmer M, Geremek M, Olbrich H, Fliegauf M, Voelkel K, Rutkiewicz E, Rutland J, et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr Pulmonol 2013; 48:352–363.
    1. Saeki H, Kondo S, Morita T, Sasagawa I, Ishizuka G, Koizumi Y. Immotile cilia syndrome associated with polycystic kidney. J Urol 1984; 132:1165–1166.
    1. Papon JF, Perrault I, Coste A, Louis B, Gerard X, Hanein S, Fares‐Taie L, Gerber S, Defoort‐Dhellemmes S, Vojtek AM, et al. Abnormal respiratory cilia in non‐syndromic Leber congenital amaurosis with CEP290 mutations. J Med Genet 2010; 47:829–834.
    1. Driscoll JA, Bhalla S, Liapis H, Ibricevic A, Brody SL. Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. Chest 2008; 133:1181–1188.
    1. D'Andrea G, Schiavulli M, Dimatteo C, Santacroce R, Guerra E, Longo VA, Grandone E, Margaglione M. Homozygosity by descent of a 3Mb chromosome 17 haplotype causes coinheritance of Glanzmann thrombasthenia and primary ciliary dyskinesia. Blood 2013; 122:4289–4291.
    1. Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M, et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 2002; 99:10282–10286.
    1. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, et al. Analysis of genetic inheritance in a family quartet by whole‐genome sequencing. Science 2010; 328:636–639.
    1. Garrod AS, Zahid M, Tian X, Francis RJ, Khalifa O, Devine W, Gabriel GC, Leatherbury L, Lo CW. Airway ciliary dysfunction and sinopulmonary symptoms in patients with congenital heart disease. Ann Am Thorac Soc 2014; 11:1426–1432.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, et al. Standardisation of spirometry. Eur Respir J 2005; 26:319–338.
    1. Boon M, Vermeulen FL, Gysemans W, Proesmans M, Jorissen M, De Boeck K. Lung structure‐function correlation in patients with primary ciliary dyskinesia. Thorax 2015; 70:339–345.
    1. Green K, Buchvald FF, Marthin JK, Hanel B, Gustafsson PM, Nielsen KG. Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax 2012; 67:49–53.
    1. Fauroux B, Tamalet A, Clement A. Management of primary ciliary dyskinesia: the lower airways. Paediatr Respir Rev 2009; 10:55–57.
    1. Zuckerman JB, Zuaro DE, Prato BS, Ruoff KL, Sawicki RW, Quinton HB, Saiman L, Infection Control Study G. Bacterial contamination of cystic fibrosis clinics. J Cyst Fibros 2009; 8:186–192.
    1. Russo K, Donnelly M, Reid AJ. Segregation‐the perspectives of young patients and their parents. J Cyst Fibros 2006; 5:93–99.
    1. Turner JA, Corkey CW, Lee JY, Levison H, Sturgess J. Clinical expressions of immotile cilia syndrome. Pediatrics 1981; 67:805–810.
    1. Wallace IF, Berkman ND, Lohr KN, Harrison MF, Kimple AJ, Steiner MJ. Surgical treatments for otitis media with effusion: a systematic review. Pediatrics 2014; 133:296–311.
    1. Browning GG, Rovers MM, Williamson I, Lous J, Burton MJ. Grommets (ventilation tubes) for hearing loss associated with otitis media with effusion in children. Cochrane Database Syst Rev. 2010. Oct 6;(10):CD001801. doi:
    1. Hadfield PJ, Rowe‐Jones JM, Bush A, Mackay IS. Treatment of otitis media with effusion in children with primary ciliary dyskinesia. Clin Otolaryngol Allied Sci 1997; 22:302–306.
    1. Wolter NE, Dell SD, James AL, Campisi P. Middle ear ventilation in children with primary ciliary dyskinesia. Int J Pediatr Otorhinolaryngol 2012; 76:1565–1568.
    1. Pruliere‐Escabasse V, Coste A, Chauvin P, Fauroux B, Tamalet A, Garabedian EN, Escudier E, Roger G. Otologic features in children with primary ciliary dyskinesia. Arch Otolaryngol Head Neck Surg 2010; 136:1121–1126.
    1. Campbell RG, Birman CS, Morgan L. Management of otitis media with effusion in children with primary ciliary dyskinesia: a literature review. Int J Pediatr Otorhinolaryngol 2009; 73:1630–1638.
    1. Jang CH, Cho YB, Choi CH. Structural features of tympanostomy tube biofilm formation in ciprofloxacin‐resistant Pseudomonas otorrhea. Int J Pediatr Otorhinolaryngol 2007; 71:591–595.
    1. Mener DJ, Lin SY, Ishman SL, Boss EF. Treatment and outcomes of chronic rhinosinusitis in children with primary ciliary dyskinesia: where is the evidence? A qualitative systematic review. Int Forum Allergy Rhinol 2013; 3:986–991.
    1. Rollin M, Seymour K, Hariri M, Harcourt J. Rhinosinusitis, smptomatology & absence of polyposis in children with primary ciliary dyskinesia. Rhinology 2009; 47:75–78.
    1. Harvey R, Hannan SA, Badia L, Scadding G. Nasal saline irrigations for the symptoms of chronic rhinosinusitis. Cochrane Database Syst Rev 2007. Jul 18;(3):CD006394.
    1. Parsons DS, Greene BA. A treatment for primary ciliary dyskinesia: efficacy of functional endoscopic sinus surgery. Laryngoscope 1993; 103:1269–1272.
    1. Gremmo ML, Guenza MC. Positive expiratory pressure in the physiotherapeutic management of primary ciliary dyskinesia in paediatric age. Monaldi Arch Chest Dis 1999; 54:255–257.
    1. Moller W, Haussinger K, Ziegler‐Heitbrock L, Heyder J. Mucociliary and long‐term particle clearance in airways of patients with immotile cilia. Respir Res 2006; 7:10.
    1. Madsen A, Green K, Buchvald F, Hanel B, Nielsen KG. Aerobic fitness in children and young adults with primary ciliary dyskinesia. PLoS ONE 2013; 8:e71409.
    1. Phillips GE, Thomas S, Heather S, Bush A. Airway response of children with primary ciliary dyskinesia to exercise and beta2‐agonist challenge. Eur Respir J 1998; 11:1389–1391.
    1. Kapur N, Masters IB, Morris PS, Galligan J, Ware R, Chang AB. Defining pulmonary exacerbation in children with non‐cystic fibrosis bronchiectasis. Pediatr Pulmonol 2012; 47:68–75.
    1. Marchant J, Masters IB, Champion A, Petsky H, Chang AB. Randomised controlled trial of amoxycillin clavulanate in children with chronic wet cough. Thorax 2012; 67:689–693.
    1. Bhatt JM. Treatment of pulmonary exacerbations in cystic fibrosis. Eur Respir Rev 2013; 22:205–216.
    1. Hill AT, Pasteur M, Cornford C, Welham S, Bilton D. Primary care summary of the British Thoracic Society Guideline on the management of non‐cystic fibrosis bronchiectasis. Prim Care Respir J 2011; 20:135–140.
    1. Pasteur MC, Bilton D, Hill AT. British thoracic society bronchiectasis non CFGG. British Thoracic Society guideline for non‐CF bronchiectasis. Thorax 2010; 65:i1–58.
    1. White L, Mirrani G, Grover M, Rollason J, Malin A, Suntharalingam J. Outcomes of Pseudomonas eradication therapy in patients with non‐cystic fibrosis bronchiectasis. Respir Med 2012; 106:356–360.
    1. Chang CC, Morris PS, Chang AB. Influenza vaccine for children and adults with bronchiectasis. Cochrane Database Syst Rev 2007. Jul 18;(3):CD006218.
    1. Nuorti JP, Whitney CG. Centers for Disease C, Prevention. Prevention of pneumococcal disease among infants and children—use of 13‐valent pneumococcal conjugate vaccine and 23‐valent pneumococcal polysaccharide vaccine—recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010; 59:1–18.
    1. Chang CC, Singleton RJ, Morris PS, Chang AB. Pneumococcal vaccines for children and adults with bronchiectasis. Cochrane Database Syst Rev 2009. Apr 15;(2):CD006316. doi: 10.1002/14651858.CD006316.pub3
    1. Quon BS, Goss CH, Ramsey BW. Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc 2014; 11:425–434.
    1. Brodt AM, Stovold E, Zhang L. Inhaled antibiotics for stable non‐cystic fibrosis bronchiectasis: a systematic review. Eur Respir J 2014; 44:382–393.
    1. Drobnic ME, Sune P, Montoro JB, Ferrer A, Orriols R. Inhaled tobramycin in non‐cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann Pharmacother 2005; 39:39–44.
    1. Scheinberg P, Shore E. A pilot study of the safety and efficacy of tobramycin solution for inhalation in patients with severe bronchiectasis. Chest 2005; 127:1420–1426.
    1. Steinfort DP, Steinfort C. Effect of long‐term nebulized colistin on lung function and quality of life in patients with chronic bronchial sepsis. Intern Med J 2007; 37:495–498.
    1. Renna M, Schaffner C, Brown K, Shang S, Tamayo MH, Hegyi K, Grimsey NJ, Cusens D, Coulter S, Cooper J, et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest 2011; 121:3554–3563.
    1. Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH, Koppers RJ, van der Werf TS, Boersma WG. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non‐cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 2013; 309:1251–1259.
    1. Serisier DJ, Martin ML, McGuckin MA, Lourie R, Chen AC, Brain B, Biga S, Schlebusch S, Dash P, Bowler SD. Effect of long‐term, low‐dose erythromycin on pulmonary exacerbations among patients with non‐cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA 2013; 309:1260–1267.
    1. Valery PC, Morris PS, Byrnes CA, Grimwood K, Torzillo PJ, Bauert PA, Masters IB, Diaz A, McCallum GB, Mobberley C, et al. Long‐term azithromycin for Indigenous children with non‐cystic‐fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double‐blind, randomised controlled trial. Lancet Respir Med 2013; 1:610–620.
    1. Elborn JS, Tunney MM. Macrolides and bronchiectasis: clinical benefit with a resistance price. JAMA 2013; 309:1295–1296.
    1. Kido T, Yatera K, Yamasaki K, Nagata S, Choujin Y, Yamaga C, Hara K, Ishimoto H, Hisaoka M, Mukae H. Two cases of primary ciliary dyskinesia with different responses to macrolide treatment. Intern Med 2012; 51:1093–1098.
    1. Yoshioka D, Sakamoto N, Ishimatsu Y, Kakugawa T, Ishii H, Mukae H, Kadota J, Kohno S. Primary ciliary dyskinesia that responded to long‐term, low‐dose clarithromycin. Intern Med 2010; 49:1437–1440.
    1. Itoh M, Kishi K, Nakamura H, Hatao H, Kioi K, Sudou A, Kobayasi K, Tuchida F, Adachi H, Yagyuu H, et al. A case of immotile‐dyskinetic cilia syndrome responding to clenbuterol hydrochloride and azithromycin. Nihon Kokyuki Gakkai Zasshi 2002; 40:617–621.
    1. Nishi K, Mizuguchi M, Tachibana H, Ooka T, Amemiya T, Myou S, Fujimura M, Matsuda T. Effect of clarithromycin on symptoms and mucociliary transport in patients with sino‐bronchial syndrome. Nihon Kyobu Shikkan Gakkai Zasshi 1995; 33:1392–1400.
    1. Pines A. Trimethoprim‐sulfamethoxazole in the treatment and prevention of purulent exacerbations of chronic bronchitis. J Infect Dis 1973; 128:706–709.
    1. Jordan GW, Krajden SF, Hoeprich PD, Wong GA, Peirce TH, Rausch DC. Trimethoprim‐sulfamethoxazole in chronic bronchitis. Can Med Assoc J 1975; 112:91–95.
    1. Hart A, Sugumar K, Milan SJ, Fowler SJ, Crossingham I. Inhaled hyperosmolar agents for bronchiectasis. Cochrane Database Syst Rev 2014; 5:CD002996.
    1. Nicolson CH, Stirling RG, Borg BM, Button BM, Wilson JW, Holland AE. The long term effect of inhaled hypertonic saline 6% in non‐cystic fibrosis bronchiectasis. Respir Med 2012; 106:661–667.
    1. Bilton D, Daviskas E, Anderson SD, Kolbe J, King G, Stirling RG, Thompson BR, Milne D, Charlton B, Investigators B. Phase 3 randomized study of the efficacy and safety of inhaled dry powder mannitol for the symptomatic treatment of non‐cystic fibrosis bronchiectasis. Chest 2013; 144:215–225.
    1. Wilkinson M, Sugumar K, Milan SJ, Hart A, Crockett A, Crossingham I, . Mucolytics for bronchiectasis. Cochrane Database Syst Rev 2014; 5:CD001289.
    1. O'Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 1998; 113:1329–1334.
    1. El‐Abiad NM, Clifton S, Nasr SZ. Long‐term use of nebulized human recombinant DNase1 in two siblings with primary ciliary dyskinesia. Respir Med 2007; 101:2224–2226.
    1. ten Berge M, Brinkhorst G, Kroon AA, de Jongste JC. DNase treatment in primary ciliary dyskinesia?assessment by nocturnal pulse oximetry. Pediatr Pulmonol 1999; 27:59–61.
    1. Desai M, Weller PH, Spencer DA. Clinical benefit from nebulized human recombinant DNase in Kartagener's syndrome. Pediatr Pulmonol 1995; 20:307–308.
    1. Hellinckx J, Demedts M, De Boeck K. Primary ciliary dyskinesia: evolution of pulmonary function. Eur J Pediatr 1998; 157:422–426.
    1. Koh YY, Park Y, Jeong JH, Kim CK, Min YG, Chi JG. The effect of regular salbutamol on lung function and bronchial responsiveness in patients with primary ciliary dyskinesia. Chest 2000; 117:427–433.
    1. Goyal V, Chang AB. Combination inhaled corticosteroids and long‐acting beta2‐agonists for children and adults with bronchiectasis. Cochrane Database Syst Rev 2014; 6:CD010327.
    1. Boon M, De Boeck K, Jorissen M, Meyts I. Primary ciliary dyskinesia and humoral immunodeficiency‐is there a missing link? Respir Med 2014; 108:931–934.
    1. Skorpinski EW, Kung SJ, Yousef E, McGeady SJ. Diagnosis of common variable immunodeficiency in a patient with primary ciliary dyskinesia. Pediatrics 2007; 119:e1203–e1205.
    1. Macchiarini P, Chapelier A, Vouhe P, Cerrina J, Ladurie FL, Parquin F, Brenot F, Simonneau G, Dartevelle P. Double lung transplantation in situs inversus with Kartagener's syndrome. Paris‐Sud University Lung Transplant Group. J Thorac Cardiovasc Surg 1994; 108:86–91.
    1. Deuse T, Reitz BA. Heart‐lung transplantation in situs inversus totalis. Ann Thorac Surg 2009; 88:1002–1003.
    1. Zito I, Downes SM, Patel RJ, Cheetham ME, Ebenezer ND, Jenkins SA, Bhattacharya SS, Webster AR, Holder GE, Bird AC, et al. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 2003; 40:609–615.
    1. Ohga H, Suzuki T, Fujiwara H, Furutani A, Koga H. A case of immotile cilia syndrome accompanied by retinitis pigmentosa. Nihon Ganka Gakkai Zasshi 1991; 95:795–801.
    1. Cetin D, Genc Cetin B, Senturk T, Sahin Cildag S, Yilmaz Akdam I. Coexistence of two rare genetic disorders: Kartagener syndrome and familial Mediterranean fever. Mod Rheumatol 2015; 25:312–314.
    1. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, Knowles MR, Zariwala MA. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med 2009; 11:473–487.

Source: PubMed

3
Suscribir