Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology

Karine Brudey, Jeffrey R Driscoll, Leen Rigouts, Wolfgang M Prodinger, Andrea Gori, Sahal A Al-Hajoj, Caroline Allix, Liselotte Aristimuño, Jyoti Arora, Viesturs Baumanis, Lothar Binder, Patricia Cafrune, Angel Cataldi, Soonfatt Cheong, Roland Diel, Christopher Ellermeier, Jason T Evans, Maryse Fauville-Dufaux, Séverine Ferdinand, Dario Garcia de Viedma, Carlo Garzelli, Lidia Gazzola, Harrison M Gomes, M Cristina Guttierez, Peter M Hawkey, Paul D van Helden, Gurujaj V Kadival, Barry N Kreiswirth, Kristin Kremer, Milan Kubin, Savita P Kulkarni, Benjamin Liens, Troels Lillebaek, Minh Ly Ho, Carlos Martin, Christian Martin, Igor Mokrousov, Olga Narvskaïa, Yun Fong Ngeow, Ludmilla Naumann, Stefan Niemann, Ida Parwati, Zeaur Rahim, Voahangy Rasolofo-Razanamparany, Tiana Rasolonavalona, M Lucia Rossetti, Sabine Rüsch-Gerdes, Anna Sajduda, Sofia Samper, Igor G Shemyakin, Urvashi B Singh, Akos Somoskovi, Robin A Skuce, Dick van Soolingen, Elisabeth M Streicher, Philip N Suffys, Enrico Tortoli, Tatjana Tracevska, Véronique Vincent, Tommie C Victor, Robin M Warren, Sook Fan Yap, Khadiza Zaman, Françoise Portaels, Nalin Rastogi, Christophe Sola, Karine Brudey, Jeffrey R Driscoll, Leen Rigouts, Wolfgang M Prodinger, Andrea Gori, Sahal A Al-Hajoj, Caroline Allix, Liselotte Aristimuño, Jyoti Arora, Viesturs Baumanis, Lothar Binder, Patricia Cafrune, Angel Cataldi, Soonfatt Cheong, Roland Diel, Christopher Ellermeier, Jason T Evans, Maryse Fauville-Dufaux, Séverine Ferdinand, Dario Garcia de Viedma, Carlo Garzelli, Lidia Gazzola, Harrison M Gomes, M Cristina Guttierez, Peter M Hawkey, Paul D van Helden, Gurujaj V Kadival, Barry N Kreiswirth, Kristin Kremer, Milan Kubin, Savita P Kulkarni, Benjamin Liens, Troels Lillebaek, Minh Ly Ho, Carlos Martin, Christian Martin, Igor Mokrousov, Olga Narvskaïa, Yun Fong Ngeow, Ludmilla Naumann, Stefan Niemann, Ida Parwati, Zeaur Rahim, Voahangy Rasolofo-Razanamparany, Tiana Rasolonavalona, M Lucia Rossetti, Sabine Rüsch-Gerdes, Anna Sajduda, Sofia Samper, Igor G Shemyakin, Urvashi B Singh, Akos Somoskovi, Robin A Skuce, Dick van Soolingen, Elisabeth M Streicher, Philip N Suffys, Enrico Tortoli, Tatjana Tracevska, Véronique Vincent, Tommie C Victor, Robin M Warren, Sook Fan Yap, Khadiza Zaman, Françoise Portaels, Nalin Rastogi, Christophe Sola

Abstract

Background: The Direct Repeat locus of the Mycobacterium tuberculosis complex (MTC) is a member of the CRISPR (Clustered regularly interspaced short palindromic repeats) sequences family. Spoligotyping is the widely used PCR-based reverse-hybridization blotting technique that assays the genetic diversity of this locus and is useful both for clinical laboratory, molecular epidemiology, evolutionary and population genetics. It is easy, robust, cheap, and produces highly diverse portable numerical results, as the result of the combination of (1) Unique Events Polymorphism (UEP) (2) Insertion-Sequence-mediated genetic recombination. Genetic convergence, although rare, was also previously demonstrated. Three previous international spoligotype databases had partly revealed the global and local geographical structures of MTC bacilli populations, however, there was a need for the release of a new, more representative and extended, international spoligotyping database.

Results: The fourth international spoligotyping database, SpolDB4, describes 1939 shared-types (STs) representative of a total of 39,295 strains from 122 countries, which are tentatively classified into 62 clades/lineages using a mixed expert-based and bioinformatical approach. The SpolDB4 update adds 26 new potentially phylogeographically-specific MTC genotype families. It provides a clearer picture of the current MTC genomes diversity as well as on the relationships between the genetic attributes investigated (spoligotypes) and the infra-species classification and evolutionary history of the species. Indeed, an independent Naïve-Bayes mixture-model analysis has validated main of the previous supervised SpolDB3 classification results, confirming the usefulness of both supervised and unsupervised models as an approach to understand MTC population structure. Updated results on the epidemiological status of spoligotypes, as well as genetic prevalence maps on six main lineages are also shown. Our results suggests the existence of fine geographical genetic clines within MTC populations, that could mirror the passed and present Homo sapiens sapiens demographical and mycobacterial co-evolutionary history whose structure could be further reconstructed and modelled, thereby providing a large-scale conceptual framework of the global TB Epidemiologic Network.

Conclusion: Our results broaden the knowledge of the global phylogeography of the MTC complex. SpolDB4 should be a very useful tool to better define the identity of a given MTC clinical isolate, and to better analyze the links between its current spreading and previous evolutionary history. The building and mining of extended MTC polymorphic genetic databases is in progress.

Figures

Figure 1
Figure 1
Bioinformatical (62 lineages/sub lineages prototype patterns) and statistical (50 most frequent) classification analysis of SpolDB4. First column ST n°: Shared-type (ST) number of prototype pattern for the linage/sub lineage. Second column: lineage/sub lineage name. Third column: Binary spoligo display with black-white squares for respectively hybridizing-non-hybridizing spacers. Fourth column: Octal code (in red: defining octal rule). Fifth column: total absolute number of isolates of the subclass when variant ST spoligos are included (using SpolNet). Sixth column: same but expressed as percentage of total clustered isolates. * Total number and Frequency for these types are already included in their mother clade if known. Undesignated types are counted within the T1-ill-defined lineage. ** in red: octal rule defining the genotype.
Figure 2
Figure 2
Percentage of main spoligotyping-defined MTC genotype families within SpolDB4 (Beijing, Beijing-like, CAS, EAI, Haarlem, LAM, Manu, X, T), by studied continents and worldwide. Abbreviations : AFR = Africa, CAM = Central America, EUR = Europe, FEA = Far-East Asia, MECA = Middle-East and Central Asia, NAM = North America, OCE = Oceania, SAM = South America.
Figure 3
Figure 3
Synthesizing World Maps showing absolute (diameter) and percentage (colour) numbers of 3 genotype families within each country: Beijing; EAI (East-African Indian) CAS (Central Asia). These maps were built on an updated SpolDB4 on 2005 September 14th, on clusters of the 50 most frequent shared types as shown in Table 1, for a total of n = 17212 isolates (Beijing n = 4042, EAI n = 1684, CAS n = 1022).
Figure 4
Figure 4
Synthesizing World Maps showing absolute (diameter) and percentage (colour) numbers of 3 genotype families within each country: M. bovis; Haarlem; Latin-American and Mediterranean (LAM). These maps were built on an updated SpolDB4 on 2005 September 14th, on clusters of the 50 most frequent shared types as shown in figure 1, for a total of n = 17212 isolates (M. bovis n = 3888, LAM n = 3400, Haarlem n = 3176). Maps were built using Philcarto (P. Waniez, version 4.38).

References

    1. Kaufmann SHE, Schaible UE. 100th anniversary of Robert Koch's Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol. 2005;13:469–475. doi: 10.1016/j.tim.2005.08.003.
    1. Mostowy S, Behr MA. The origin and evolution of Mycobacterium tuberculosis. Clin Chest Med. 2005;26:207–216. doi: 10.1016/j.ccm.2005.02.004.
    1. Groenen PMA, Bunschoten AE, vanSoolingen D, vanEmbden JDA. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol. 1993;10:1057–1065.
    1. Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of a novel family of sequence repeats among prokaryotes. Genomics. 2002;6:23–33.
    1. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60:174–182. doi: 10.1007/s00239-004-0046-3.
    1. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653–663. doi: 10.1099/mic.0.27437-0.
    1. Gori A, Bandera A, Marchetti G, Degli Esposti A, Catozzi L, Nardi GP, Gazzola L, Ferrario G, van Embden JD, van Soolingen D, et al. Spoligotyping and Mycobacterium tuberculosis. Emerg Infect Dis. 2005;11:1242–1248.
    1. Frothingham R, Meeker-O'Connell WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiol. 1998;144:1189–1196.
    1. Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol. 2000;36:762–771. doi: 10.1046/j.1365-2958.2000.01905.x.
    1. Lindstedt BA. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis. 2005;26:2567–2582. doi: 10.1002/elps.200500096.
    1. Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA. 2004;101:4871–4876. doi: 10.1073/pnas.0305627101.
    1. Sola C, Filliol I, Legrand E, Mokrousov I, Rastogi N. Mycobacterium tuberculosis phylogeny reconstruction based on combined numerical analysis with IS IS6110, VNTR and DR-based spoligotyping suggests the existence of two new phylogeographical clades. J Mol Evol. 1081;53:680–689. doi: 10.1007/s002390010255.
    1. Supply P, Warren RM, Banuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol. 2003;47:529–538. doi: 10.1046/j.1365-2958.2003.03315.x.
    1. Mokrousov I, Ly HM, Otten T, Lan NN, Vyshnevskyi B, Hoffner S, Narvskaya O. Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res. 2005;15:1357–1364. doi: 10.1101/gr.3840605.
    1. Fabre M, Koeck JL, Le Fleche P, Simon F, Herve V, Vergnaud G, Pourcel C. High genetic diversity revealed by variable-number tandem repeat genotyping and analysis of hsp65 gene polymorphism in a large collection of "Mycobacterium canettii" strains indicates that the M. tuberculosis complex is a recently emerged clone of "M. canettii". J Clin Microbiol. 2004;42:3248–3255. doi: 10.1128/JCM.42.7.3248-3255.2004.
    1. Cruciani F, Santolamazza P, Shen P, Macaulay V, Moral P, Olckers A, Modiano D, Destro-Bisol G, Coia V, et al. A back migration from Asia to sub-Saharan Africa is supported by high- resolution analysis of human Y-chromosome haplotypes. Am J Hum Genet. 2002;70:1197–1214. doi: 10.1086/340257.
    1. Kinsella RJ, Fitzpatrick DA, Creevey CJ, McInerney JO. Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc Natl Acad Sci USA. 2003;100:10320–10325. doi: 10.1073/pnas.1737230100.
    1. Klovdahl AS, Graviss EA, Yaganehdoost A, Ross MW, Wanger A, Adams GJ, Musser JM. Networks and tuberculosis: an undetected community outbreak involving public places. Soc Sci Med. 2001;52:681–694. doi: 10.1016/S0277-9536(00)00170-2.
    1. Hopcroft J, Khan O, Kulis B, Selman B. Tracking evolving communities in large linked networks. Proc Natl Acad Sci USA. 2004;101:5249–5253. doi: 10.1073/pnas.0307750100. Epub 2004 Feb 5242.
    1. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst. 1987;18:489–522.
    1. Knowles LL. The burgeoning field of statistical phylogeography. J Evol Biol. 2004;17:1–10. doi: 10.1046/j.1420-9101.2003.00644.x.
    1. van Belkum A, Struelens M, deVisser A, Verbrugh H, Tibayrenc M. Role of genomic typing in Taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev. 2001;14:547–560. doi: 10.1128/CMR.14.3.547-560.2001.
    1. Sola C, Devallois A, Horgen L, Maïsetti J, Filliol I, Legrand E, Rastogi N. Tuberculosis in the Caribbean: using spacer oligonucleotide typing to understand strain origin and transmission. Emerg Inf Dis. 1999;5:404–414.
    1. Sola C, Filliol I, Guttierez C, Mokrousov I, Vincent V, Rastogi N. Spoligotype database of Mycobacterium tuberculosis: Biogeographical distribution of shared types and epidemiological and phylogenetic perspectives. Emerg Inf Dis. 2001;7:390–396.
    1. Filliol I, Driscoll JR, Van Soolingen D, Kreiswirth BN, Kremer K, Valétudie G, Anh DD, Barlow R, Banerjee D, Bifani PJ, et al. Global distribution of Mycobacterium tuberculosis spoligotypes. Emerge Inf Dis. 2002;8:1347–1350.
    1. Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valetudie G, Dang DA, Barlow R, Banerjee D, Bifani PJ, et al. Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol. 2003;41:1963–1970. doi: 10.1128/JCM.41.5.1963-1970.2003.
    1. Sebban M, Mokrousov I, Rastogi N, Sola C. A Data-mining approach to Spacer Oligonucleotide Typing of Mycobacterium tuberculosis. Bioinformatics. 2002;18:235–243. doi: 10.1093/bioinformatics/18.2.235.
    1. Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, Musser JM. Single-Nucleotide Polymorphism-Based Population Genetic Analysis of Mycobacterium tuberculosis Strains from 4 Geographic Sites. J Infect Dis. 2006;193:121–128. doi: 10.1086/498574.
    1. Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbon MH, Bobadilla del Valle M, Fyfe J, Garcia-Garcia L, Rastogi N, Zozio T, et al. The Global Phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis : insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems and recommendations for a minimal standard SNP set. J Bacteriol. 2006
    1. Warren RM, Streicher EM, Sampson SL, Van Der Spuy GD, Richardson M, Nguyen D, Behr MA, Victor TC, Van Helden PD. Microevolution of the Direct Repeat Region of Mycobacterium tuberculosis: Implications for Interpretation of Spoligotyping Data. J Clin Microbiol. 2002;40:4457–4465. doi: 10.1128/JCM.40.12.4457-4465.2002.
    1. Quitugua TN, Seaworth BJ, Weis SE, Taylor JP, Gillette JS, Rosas II, Jost KC, Jr, Magee DM, Cox RA. Transmission of drug-resistant tuberculosis in Texas and Mexico. J Clin Microbiol. 2002;40:2716–2724. doi: 10.1128/JCM.40.8.2716-2724.2002.
    1. vanSoolingen D, vanderZanden AGM, deHaas PEW, Noordhoek GT, Kiers A, Foudraine NA, Portaels F, Kolk AHJ, Kremer K, vanEmbden JDA. Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J Clin Microbiol. 1998;36:1840–1845.
    1. Aranaz A, Liebana E, Gomez-Mampaso E, Galan JC, Cousins D, Ortega A, Blazquez J, Baquero F, Mateos A, Suarez G, et al. Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol. 1999;49:1263–1273.
    1. van der Zanden AG, Kremer K, Schouls LM, Caimi K, Cataldi A, Hulleman A, Nagelkerke NJ, van Soolingen D. Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol. 2002;40:4628–4639. doi: 10.1128/JCM.40.12.4628-4639.2002.
    1. Brudey K, Gutierrez MC, Vincent V, Parsons LM, Salfinger M, Rastogi N, Sola C. Mycobacterium africanum Genotyping Using Novel Spacer Oligonucleotides in the Direct Repeat Locus. J Clin Microbiol. 2004;42:5053–5057. doi: 10.1128/JCM.42.11.5053-5057.2004.
    1. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959.
    1. Structure
    1. Vijaya-Bhanu N, van Soolingen D, van Embden JDA, Dar L, Pandey RM, Seth P. Predominance of a novel Mycobacterium tuberculosis genotype in the Delhi region of India. Tuberculosis. 2002;82:105–112. doi: 10.1054/tube.2002.0332.
    1. Singh UB, Suresh N, Vijaya Bhanu N, Arora J, Pant H, Sinha S, Aggarwal RC, Singh S, Pande JN, Sola C, et al. Predominant Tuberculosis Spoligotypes, Delhi, India. Emerg Infect Dis. 2004;10:1138–1142.
    1. McHugh TD, Batt SL, Shorten RJ, Gosling RD, Uiso L, Gillespie SH. Mycobacterium tuberculosis lineage : a naming of the parts. Tuberculosis (Edinb) 2005;85:127–136. doi: 10.1016/j.tube.2004.06.002.
    1. Douglas JT, Qian L, Montoya JC, Musser JM, Van Embden JD, Van Soolingen D, Kremer K. Characterization of the Manila Family of Mycobacterium tuberculosis. J Clin Microbiol. 2003;41:2723–2726. doi: 10.1128/JCM.41.6.2723-2726.2003.
    1. Namwat W, Luangsuk P, Palittapongarnpim P. The genetic diversity of Mycobacterium tuberculosis strains in Thailand studied by amplification of DNA segments containing direct repetitive sequences. Int J Tuberc Lung Dis. 1998;2:153–159.
    1. Kovalev SY, Kamaev EY, Kravchenko MA, Kurepina NE, Skorniakov SN. Genetic analysis of Mycobacterium tuberculosis strains isolated in Ural region, Russian federation, by MIRU-VNTR genotyping. Int J Tuberc Lung Dis. 2005;9:746–752.
    1. Zozio T, Allix C, Gunal S, Saribas Z, Alp A, Durmaz R, Fauville-Dufaux M, Rastogi N, Sola C. Genotyping of Mycobacterium tuberculosis in two cities of Turkey suggests a phylogeographical specificity for the LAM7 lineage. BMC Microbiol. 2005;5
    1. Niobe-Eyangoh SN, Kuaban C, Sorlin P, Cunin P, Thonnon J, Sola C, Rastogi N, Vincent V, Gutierrez MC. Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol. 2003;41:2547–2553. doi: 10.1128/JCM.41.6.2547-2553.2003.
    1. Ngo Niobe-Eyangoh S, Kuaban C, Sorlin P, Cunin P, Thonnon J, Sola C, Rastogi N, Vincent V, Gutierrez MC. Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol. 2003;41:2547–2553. doi: 10.1128/JCM.41.6.2547-2553.2003.
    1. Easterbrook PJ, Gibson A, Murad S, Lamprecht D, Ives N, Ferguson A, Lowe O, Mason P, Ndudzo A, Taziwa A, et al. High rates of clustering of strains causing tuberculosis in Harare, Zimbabwe: a molecular epidemiological study. J Clin Microbiol. 2004;42:4536–4544. doi: 10.1128/JCM.42.10.4536-4544.2004.
    1. Garcia de Viedma D, Bouza E, Rastogi N, Sola C. Analysis of Mycobacterium tuberculosis genotypes in Madrid : description of two new families specific to Spain-related settings. J Clin Microbiol. 2005;43:1797–1806. doi: 10.1128/JCM.43.4.1797-1806.2005.
    1. Sola C, Ferdinand S, Mammina C, Nastasi A, Rastogi N. Genetic Diversity of Mycobacterium tuberculosis in Sicily Based on Spoligotyping and Variable Number of Tandem DNA Repeats and Comparison with a Spoligotyping Database for Population-Based Analysis. J Clin Microbiol. 2001;39:1559–1565. doi: 10.1128/JCM.39.4.1559-1565.2001.
    1. Hermans PW, Messadi F, Guebrexhaber H, Soolingen Dv, Haas PEWd, Heersma H, Neeling Hd, Ayoub A, Portaels F, Frommel D, et al. Analysis of the Population Structure of Mycobacterium tuberculosis in Ethiopia, Tunisia and the Netherlands: usefulness of DNA Typing for Global Tuberculosis Epidemiology. J I D. 1995;171:1504–1513.
    1. Lari N, Rindi L, Sola C, Bonanni D, Rastogi N, Tortoli E, Garzelli C. Genetic diversity determined on the basis of katG463 and gyrA95 polymorphisms, spoligotying, and IS6110 typing of the Mycobacterium tuberculosis complex isolates from Italy. J Clin Microbiol. 2005;43:1617–1624. doi: 10.1128/JCM.43.4.1617-1624.2005.
    1. Ohata R, Tada A. [Beijing family and other genotypes of Mycobacterium tuberculosis isolates in Okayama district] Kekkaku. 2004;79:47–53.
    1. Sola C, Zozio T, Ellermeier C, Sajduda A, Naumann L, Nguyen D, Behr M, de Haas P, vanH est R, van Soolingen D, et al. The presumed origin of a recent tuberculosis outbreak among the Inuit community of Nunavik. 26th Annual Congress of the European Society of Mycobacteriology:2005: Istanbul, Turkey, June 25–29th 2005. 2005. p. 91. Abstract Book, P-27 poster.
    1. Gutacker MM, Smoot JC, Migliaccio CA, Ricklefs SM, Hua S, Cousins DV, Graviss EA, Shashkina E, Kreiswirth BN, Musser JM. Genome-Wide Analysis of Synonymous Single Nucleotide Polymorphisms in Mycobacterium tuberculosis Complex Organisms. Resolution of genetic relationships among closely related microbial strains. Genetics. 2002;162:1533–1543.
    1. Baker L, Brown T, Maiden MC, Drobniewski F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Inf Dis. 2004;10:1568–1577.
    1. Dale JW, Al-Ghusein H, Al-Hasmi S, Butcher PD, Dickens A, Drobniewski F, Forbes KJ, Gillespie S, Lamprecht D, McHugh TD, et al. Evolutionary relationships amongst isolates of Mycobacterium tuberculosis with few copies of IS 6110. J Bacteriol. 2003;185:2555–2562. doi: 10.1128/JB.185.8.2555-2562.2003.
    1. Warren RM, Victor TC, Streicher EM, Richardson M, van der, Spuy GD, Johnson R, Chihota VN, Locht C, Supply P, van Helden PD. Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J Clin Microbiol. 2004;42:5774–5782. doi: 10.1128/JCM.42.12.5774-5782.2004.
    1. Soini H, Pan X, Teeter L, Musser JM, Graviss EA. Transmission dynamics and molecular characterization of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 [In Process Citation] J Clin Microbiol. 2001;39:217–221. doi: 10.1128/JCM.39.1.217-221.2001.
    1. Berkhin P. Survey of clustering data mining techniques, Accrue Software,. 2002. 2002. http://wwwaccruecom/products/rp_cluster_reviewpdf.
    1. Vitol I, Driscoll J, Kurepina N, Kreiswirth B, Bennett K. SpotClust : a tool to cluster spoligotype data for tuberculosis evolution and epidemiology. Recomb 2005: Cambrdige, Ma, May 14–18; 2005. 2005.
    1. Duchene V, Ferdinand S, Filliol I, Guégan JF, Rastogi N, Sola C. Phylogenetic reconstruction of the Mycobacterium tuberculosis complex within four settings of the Caribbean region : tree comparative analysis and first appraisal on their phylogeography. Infect Gen Evol. 2004;4:5–14. doi: 10.1016/j.meegid.2003.09.001.
    1. Sola C, Rastogi N. Genetic description and frequency maps of some major families of Mycobacterium tuberculosis. In: Ngeow YF, SF Yap, editor. Molecular Epidemiology and Population Genetics of Tuberculosis. Kuala Lumpur: Academy of Sciences of Malaysia; 2006. pp. 23–68.
    1. Qian L, Embden JDAv, Zanden AGMvd, Weltevreden EF, Duanmu H, Douglas JT. Retrospective analysis of the Beijing family of Mycobacterium tuberculosis in preserved lung tissues. J Clin Microbiol. 1999;37:471–474.
    1. Glynn JR, Whiteley J, Bifani PJ, Kremer K, Van Soolingen D. Worldwide Occurrence of Beijing/W Strains of Mycobacterium tuberculosis: A Systematic Review. Emerg Infect Dis. 2002;8:843–849.
    1. Phyu S, Jureen R, Ti T, Dahle UR, Grewal HM. Heterogeneity of Mycobacterium tuberculosis isolates in Yangon, Myanmar. J Clin Microbiol. 2003;41:4907–4908. doi: 10.1128/JCM.41.10.4907-4908.2003.
    1. Kulkarni S, Sola C, Filliol I, Rastogi N, Kadival G. Spoligotyping of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mumbai, India. Res Microbiol. 2005;156:588–596. doi: 10.1016/j.resmic.2005.01.005. Epub 2005 Feb 2007.
    1. Gascoyne-Binzi DM, Barlow RE, Essex A, Gelletlie R, Khan MA, Hafiz S, Collyns TA, Frizzell R, Hawkey PM. Predominant VNTR family of strains of Mycobacterium tuberculosis isolated from South Asian patients. Int J Tuberc Lung Dis. 2002;6:492–496.
    1. Farnia P, Mohammadi F, Masjedi MR, Varnerot A, Zarifi AZ, Tabatabee J, Douraghei M, Ghazisaeedi K, Mansorri D, Bahadori M, et al. Evaluation of tuberculosis transmission in Tehran: using RFLP and spoligotyping methods. J Infect. 2004;49:94–101. doi: 10.1016/j.jinf.2003.11.015.
    1. Kempf MC, Dunlap NE, Lok KH, Benjamin WH, Jr, Keenan NB, Kimerling ME. Long-term molecular analysis of tuberculosis strains in Alabama, a state characterized by a largely indigenous, low-risk population. J Clin Microbiol. 2005;43:870–878. doi: 10.1128/JCM.43.2.870-878.2005.
    1. Liens B, Sola C, Brudey K, Rastogi N, and the european co-investigators of the SITVIT consortium Spatial Genetics and the spreading history of tuberculosis in Europe. 26th Annual Congress of the European Society for Mycobacteriology June 26th–29th 2005: Istanbul, Turkey, 26–29 Jun 2005. 2005. p. 65. Abstract Book, P-1 poster.
    1. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005;1:e5. doi: 10.1371/journal.ppat.0010005.
    1. Cruciani F, Santolamazza P, Shen P, Macaulay V, Moral P, Olckers A, Modiano D, Holmes S, Destro-Bisol G, Coia V, et al. A back migration from Asia to sub-Saharan Africa is supported by high-resolution analysis of human Y-chromosome haplotypes. Am J Hum Genet. 2002;70:1197–1214. doi: 10.1086/340257.
    1. Mokrousov I, Ly HM, Otten T, Lan NLT, Vyshnevskyi B, Hoffner S, Narvskaia OV. Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype : clues from human phylogeography. Genom Res. 2005;15:1357–1364. doi: 10.1101/gr.3840605.
    1. Shamputa IC, Rigouts L, Eyongeta LA, El Aila NA, van Deun A, Salim AH, Portaels F. Frequency of mixed M. tuberculosis strains in pulmonary tuberculosis from a high incidence setting. Third meeting of concerted action project : new generation genetic markers and techniques for the epidemiology and control of tuberculosis: 2003; Prague. 2003. p. 22.
    1. Feil EJ, Smith JM, Enright MC, Spratt BG. Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics. 2000;154:1439–1450.
    1. Gibson A, Brown T, Baker L, Drobniewski F. Can 15-Locus Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Analysis Provide Insight into the Evolution of Mycobacterium tuberculosis? Appl Environ Microbiol. 2005;71:8207–8213. doi: 10.1128/AEM.71.12.8207-8213.2005.
    1. Sun YJ, Bellamy R, Lee AS, Ng ST, Ravindran S, Wong SY, Locht C, Supply P, Paton NI. Use of Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing To Examine Genetic Diversity of Mycobacterium tuberculosis in Singapore. J Clin Microbiol. 2004;42:1986–1993. doi: 10.1128/JCM.42.5.1986-1993.2004.
    1. Blackwood KS, Al-Azem A, Elliott LJ, Hershfield ES, Kabani AM. Conventional and molecular epidemiology of tuberculosis in Manitoba. BMC Infect Dis. 2003;3:18. doi: 10.1186/1471-2334-3-18.
    1. Scott AN, Menzies D, Tannenbaum T, Thibert L, Kozak R, Joseph L, Schwartzman K, Behr MA. Sensitivities and Specificities of Spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing methods for studying Molecular epidemiology of Tuberculosis. J Clin Microbiol. 2005;43:89–94. doi: 10.1128/JCM.43.1.89-94.2005.
    1. Malik AN, Godfrey-Faussett P. Effects of genetic variability of Mycobacterium tuberculosis strains on the presentation of disease. Lancet Infect Dis. 2005;5:174–183.
    1. Smith NH, Dale J, Inwald J, Palmer S, Gordon SV, Hewinson RG, Maynard Smith J. The population structure of Mycobacterium bovis in Great Britain : clonal expansion. published online before print December 1st, 2003. Proc Natl Acad Sci USA. 2003.
    1. van Soolingen D, Qian L, de Haas PEW, Douglas JT, Traore H, Portaels F, Qing HZ, Enkhsaikan D, Nymadawa P, van Embden JDA. Predominance of a Single Genotype of Mycobacterium tuberculosis in Countries of East Asia. J Clin Microbiol. 1995;33:3234–3238.
    1. SpolDB4
    1. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, Van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–914.
    1. van Embden JDA, van Gorkom T, Kremer K, Jansen R, van der Zeijst BAM, Schouls LM. Genetic variation and evolutionary origin of the Direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol. 2000;182:2393–2401. doi: 10.1128/JB.182.9.2393-2401.2000.
    1. Dale JW, Brittain D, Cataldi AA, Cousins D, Crawford JT, Driscoll J, Heersma H, Lillebaek T, Quitugua T, Rastogi N, et al. Spacer oligonucleotide typing of Mycobacterium tuberculosis : recommendations for standardized nomenclature. Int J Tuberc Lung Dis. 2001;5:216–219.
    1. Sreevatsan S, Pan X, Stockbauer K, Connell N, Kreiswirth B, Whittam T, Musser J. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA. 1997;94:9869–9874. doi: 10.1073/pnas.94.18.9869.
    1. Soini H, Pan X, Amin A, Graviss EA, Siddiqui A, Musser JM. Characterization of Mycobacterium tuberculosis isolates from patients in Houston, Texas, by spoligotyping. J Clin Microbiol. 2000;38:669–676.
    1. Enright AJ, Ouzounis CA. BioLayout– an automatic graph layout algorithm for similarity visualization. Bioinformatics. 2001;17:853–854. doi: 10.1093/bioinformatics/17.9.853.
    1. Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol. 2001;39:3563–3571. doi: 10.1128/JCM.39.10.3563-3571.2001.
    1. SpotClust
    1. Ewen KR, Bahlo M, Treloar SA, Levinson DF, Mowry B, Barlow JW, Foote SJ. Identification and analysis of error types in high-throughput genotyping. Am J Hum Genet. 2000;67:727–736. doi: 10.1086/303048.
    1. Institut Pasteur de la Guadeloupe.

Source: PubMed

3
Suscribir