Eight weeks of mineralocorticoid blockade does not improve insulin sensitivity in type 2 diabetes

Stine H Finsen, Mie R Hansen, Joachim Hoffmann-Petersen, Henrik F Højgaard, Stefan P Mortensen, Stine H Finsen, Mie R Hansen, Joachim Hoffmann-Petersen, Henrik F Højgaard, Stefan P Mortensen

Abstract

Individuals with type 2 diabetes have an increased risk of cardiovascular disease. A correlation between plasma aldosterone and hyperinsulinemia has been demonstrated in vivo, and hyperinsulinemia and insulin resistance are independently associated with the development of cardiovascular complications. We investigated if mineralocorticoid blockade (Eplerenone) improves insulin sensitivity in individuals with type 2 diabetes compared to healthy controls. We included 13 participants with type 2 diabetes (<5 years; male/female, Caucasians) and 10 healthy control participants (male/female, Caucasians). On 2 experimental days, before and at the end of the 8 weeks of treatment with mineralocorticoid blockade, a two-stage hyperinsulinemic-isoglycemic clamp (20 and 50 mU∙m-2 min-1 ) was performed for the determination of insulin sensitivity. No change in insulin sensitivity was detected at the end of the mineralocorticoid blockade in the individuals with type 2 diabetes or the healthy controls. Both before and at the end of the treatment with mineralocorticoid blockade, the individuals with type 2 diabetes had a lower insulin sensitivity compared to healthy controls. In conclusion, mineralocorticoid receptor blockade does not appear to improve insulin sensitivity in individuals with type 2 diabetes. CLINICAL TRIAL REGISTRATION: NCT03017703. https://ichgcp.net/clinical-trials-registry/NCT03017703.

Keywords: aldosterone; insulin sensitivity; mineralocorticoid blockade; type 2 diabetes.

Conflict of interest statement

The authors declare no conflict of interest.

© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Figures

FIGURE 1
FIGURE 1
Experimental protocol. A two‐stage hyperinsulinemic‐isoglycemic clamp was performed. At −30, −20 and −10 min before initiating the first stage and during periods of steady state in both clamp stage one and two, blood samples were measured for every 10 min. Red arrows indicate blood samples drawn at steady state periods during baseline, clamp stage one and clamp stage two
FIGURE 2
FIGURE 2
Glucose infusion rate (GIR; mL h‐1) before and following mineralocorticoid blockade (MR). T2D: individuals with type 2 diabetes. CON: control participants. *= 0.04 in the individuals with type 2 diabetes
FIGURE 3
FIGURE 3
Difference in calculated baseline sensitivity (panel A) and insulin resistance (panel B) by HOMA2 between the individuals with type 2 diabetes and healthy controls before and following mineralocorticoid blockade (MR). CON: healthy controls, T2D: individuals with type 2 diabetes. Pre: prior to MR blockade. Post: following MR blockade. Panel A: pre MR: *= 0.03, post MR: *= 0.02. Panel B: pre MR: *= 0.03

References

    1. Adachi, H. , Kakuma, T. , Kawaguchi, M. , Kumagai, E. , & Fukumoto, Y. (2019). Effects of eplerenone on blood pressure and glucose metabolism in Japanese hypertensives with overweight or obesity. Medicine (Baltimore), 98, e14994.
    1. Adler, G. K. , Murray, G. R. , Turcu, A. F. , Nian, H. , Yu, C. , Solorzano, C. C. , Manning, R. , Peng, D. , & Luther, J. M. (2020). Primary aldosteronism decreases insulin secretion and increases insulin clearance in humans. Hypertension, 75, 1251–1259.
    1. Agarwal, R. , Anker, S. D. , Bakris, G. , Filippatos, G. , Pitt, B. , Rossing, P. , Ruilope, L. , Gebel, M. , Kolkhof, P. , Nowack, C. , & Joseph, A. (2020). Investigating new treatment opportunities for patients with chronic kidney disease in type 2 diabetes: The role of finerenone. Nephrology, Dialysis, Transplantation. 10.1093/ndt/gfaa294
    1. Belden, Z. , Deiuliis, J. A. , Dobre, M. , & Rajagopalan, S. (2017). The role of the mineralocorticoid receptor in inflammation: Focus on kidney and vasculature. American Journal of Nephrology, 46, 298–314.
    1. Bender, S. B. , McGraw, A. P. , Jaffe, I. Z. , & Sowers, J. R. (2013). Mineralocorticoid receptor‐mediated vascular insulin resistance: an early contributor to diabetes‐related vascular disease? Diabetes, 62, 313–319.
    1. Briet, M. , & Schiffrin, E. L. (2011). The role of aldosterone in the metabolic syndrome. Current Hypertension Reports, 13, 163–172.
    1. Bruder‐Nascimento, T. , da Silva, M. A. , & Tostes, R. C. (2014). The involvement of aldosterone on vascular insulin resistance: Implications in obesity and type 2 diabetes. Diabetology and Metabolic Syndrome, 6, 90.
    1. Cannavo, A. , Bencivenga, L. , Liccardo, D. , Elia, A. , Marzano, F. , Gambino, G. , D'Amico, M. L. , Perna, C. , Ferrara, N. , Rengo, G. , & Paolocci, N. (2018). Aldosterone and mineralocorticoid receptor system in cardiovascular physiology and pathophysiology. Oxidative Medicine and Cellular Longevity, 2018, 1–10. 10.1155/2018/1204598
    1. Cardillo, C. , Nambi, S. S. , Kilcoyne, C. M. , Choucair, W. K. , Katz, A. , Quon, M. J. , & Panza, J. A. (1999). Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation, 100, 820–825. 10.1161/01.CIR.100.8.820
    1. Catena, C. , Lapenna, R. , Baroselli, S. , Nadalini, E. , Colussi, G. , Novello, M. , Favret, G. , Melis, A. , Cavarape, A. , & Sechi, L. A. (2006). Insulin sensitivity in patients with primary aldosteronism: A follow‐up study. The Journal of Clinical Endocrinology & Metabolism, 91, 3457–3463.
    1. Finsen, S. H. , Hansen, M. R. , Hansen, P. B. L. , & Mortensen, S. P. (2020). Aldosterone induces vasoconstriction in individuals with type 2 diabetes: Effect of acute antioxidant administration. Journal of Clinical Endocrinology and Metabolism. 10.1210/clinem/dgaa867
    1. Fonseca, V. A. (2009). Defining and characterizing the progression of type 2 diabetes. Diabetes Care, 32(Suppl 2), S151–S156. 10.2337/dc09-S301
    1. Fountain, J. H. , & Lappin, S. L. (2020) Physiology, renin angiotensin system. In StatPearls. Treasure Island, FL: StatPearls Publishing. Retrieved from
    1. Garg, R. , Hurwitz, S. , Williams, G. H. , Hopkins, P. N. , & Adler, G. K. (2010). Aldosterone production and insulin resistance in healthy adults. Journal of Clinical Endocrinology and Metabolism, 95, 1986–1990. 10.1210/jc.2009-2521
    1. Griffin, T. P. , Wall, D. , Browne, G. A. , Dennedy, M. C. , & O'Shea, P. M. (2018). Associations between glycaemic control and activation of the renin‐angiotensin‐aldosterone system in participants with type 2 diabetes mellitus and hypertension. Annals of Clinical Biochemistry, 55, 373–384. 10.1177/0004563217728964
    1. Hermidorff, M. M. , de Assis, L. V. M. , & Isoldi, M. C. (2017). Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Failure Reviews, 22, 65–89.
    1. Hitomi, H. , Kiyomoto, H. , Nishiyama, A. , Hara, T. , Moriwaki, K. , Kaifu, K. , Ihara, G. , Fujita, Y. , Ugawa, T. , & Kohno, M. (2007). Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate‐1 in vascular smooth muscle cells. Hypertension, 50, 750–755. 10.1161/HYPERTENSIONAHA.107.093955
    1. Huynh, K. , Bernardo, B. C. , McMullen, J. R. , & Ritchie, R. H. (2014). Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology & Therapeutics, 142, 375–415.
    1. Hwang, M. H. , Yoo, J. K. , Luttrell, M. , Meade, T. H. , English, M. , & Christou, D. D. (2015). Effect of selective mineralocorticoid receptor blockade on flow‐mediated dilation and insulin resistance in older adults with metabolic syndrome. Metabolic Syndrome and Related Disorders, 13, 356–361. 10.1089/met.2015.0044
    1. Jansson, P. A. (2007). Endothelial dysfunction in insulin resistance and type 2 diabetes. Journal of Internal Medicine, 262, 173–183. 10.1111/j.1365-2796.2007.01830.x
    1. Joseph, J. J. , Echouffo Tcheugui, J. B. , Effoe, V. S. , Hsueh, W. A. , Allison, M. A. , & Golden, S. H. (2018). Renin‐angiotensin‐aldosterone system, glucose metabolism and incident type 2 diabetes mellitus: MESA. Journal of the American Heart Association, 7, e009890.
    1. Kenny, H. C. , & Abel, E. D. (2019). Heart failure in type 2 diabetes mellitus. Circulation Research, 124, 121–141. 10.1161/CIRCRESAHA.118.311371
    1. Kim, J. A. , Montagnani, M. , Koh, K. K. , & Quon, M. J. (2006). Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation, 113, 1888–1904.
    1. Kirwan, J. P. , Sacks, J. , & Nieuwoudt, S. (2017). The essential role of exercise in the management of type 2 diabetes. Cleveland Clinic Journal of Medicine, 84, S15–S21. 10.3949/ccjm.84.s1.03
    1. Kumagai, E. , Adachi, H. , Jacobs, D. R. Jr , Hirai, Y. , Enomoto, M. , Fukami, A. , Otsuka, M. , Kumagae, S. , Nanjo, Y. , Yoshikawa, K. , Esaki, E. , Yokoi, K. , Ogata, K. , Kasahara, A. , Tsukagawa, E. , Ohbu‐Murayama, K. , & Imaizumi, T. (2011). Plasma aldosterone levels and development of insulin resistance: Prospective study in a general population. Hypertension, 58, 1043–1048.
    1. Leighton, E. , Sainsbury, C. A. , & Jones, G. C. (2017). A practical review of C‐peptide testing in diabetes. Diabetes Therapy, 8, 475–487. 10.1007/s13300-017-0265-4
    1. Luther, J. M. (2014). Effects of aldosterone on insulin sensitivity and secretion. Steroids, 91, 54–60. 10.1016/j.steroids.2014.08.016
    1. Luther, J. M. , Luo, P. , Kreger, M. T. , Brissova, M. , Dai, C. , Whitfield, T. T. , Kim, H. S. , Wasserman, D. H. , Powers, A. C. , & Brown, N. J. (2011). Aldosterone decreases glucose‐stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia, 54, 2152–2163. 10.1007/s00125-011-2158-9
    1. Melmed, S. , Polonsky, K. , Larsen, P. , & Kronenborg, H. (2016). Williams textbook of endocrinology. Elsevier Saunders.
    1. Mojiminiyi, O. A. , & Abdella, N. A. (2010). Effect of homeostasis model assessment computational method on the definition and associations of insulin resistance. Clinical Chemistry and Laboratory Medicine, 48, 1629–1634. 10.1515/CCLM.2010.303
    1. Muniyappa, R. , Lee, S. , Chen, H. , & Quon, M. J. (2008). Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. American Journal of Physiology‐Endocrinology and Metabolism, 294, E15–E26.
    1. Muniyappa, R. , & Sowers, J. R. (2013). Role of insulin resistance in endothelial dysfunction. Reviews in Endocrine & Metabolic Disorders, 14, 5–12. 10.1007/s11154-012-9229-1
    1. Paneni, F. , Beckman, J. A. , Creager, M. A. , & Cosentino, F. (2013). Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. European Heart Journal, 34, 2436–2443.
    1. Pereira, P. F. , Prior, S. E. , & Bressan A. J. (2014). Aldosterone: A cardiometabolic risk hormone? Nutrción Hospitalaria, 30, 1191–1202.
    1. Silva, M. A. , Cau, S. B. , Lopes, R. A. , Manzato, C. P. , Neves, K. B. , Bruder‐Nascimento, T. , Mestriner, F. L. , Montezano, A. C. , Nguyen Dinh Cat, A. , Touyz, R. M. , & Tostes, R. C. Mineralocorticoid receptor blockade prevents vascular remodelling in a rodent model of type 2 diabetes mellitus. Clinical Science. 129, 533–545.
    1. Wallace, T. M. , Levy, J. C. , & Matthews, D. R. (2004). Use and abuse of HOMA modeling. Diabetes Care, 27, 1487–1495. 10.2337/diacare.27.6.1487
    1. Yamaji, M. , Tsutamoto, T. , Kawahara, C. , Nishiyama, K. , Yamamoto, T. , Fujii, M. , & Horie, M. (2010). Effect of eplerenone versus spironolactone on cortisol and hemoglobin A₁(c) levels in patients with chronic heart failure. American Heart Journal, 160, 915–921.
    1. Zhao, J. V. , Xu, L. , Lin, S. L. , & Schooling, C. M. (2016). Spironolactone and glucose metabolism, a systematic review and meta‐analysis of randomized controlled trials. Journal of the American Society of Hypertension, 10, 671–682. 10.1016/j.jash.2016.05.013

Source: PubMed

3
Suscribir