Emerging Roles of Impaired Autophagy in Fatty Liver Disease and Hepatocellular Carcinoma

Suryakant Niture, Minghui Lin, Leslimar Rios-Colon, Qi Qi, John T Moore, Deepak Kumar, Suryakant Niture, Minghui Lin, Leslimar Rios-Colon, Qi Qi, John T Moore, Deepak Kumar

Abstract

Autophagy is a conserved catabolic process that eliminates dysfunctional cytosolic biomolecules through vacuole-mediated sequestration and lysosomal degradation. Although the molecular mechanisms that regulate autophagy are not fully understood, recent work indicates that dysfunctional/impaired autophagic functions are associated with the development and progression of nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), and hepatocellular carcinoma (HCC). Autophagy prevents NAFLD and AFLD progression through enhanced lipid catabolism and decreasing hepatic steatosis, which is characterized by the accumulation of triglycerides and increased inflammation. However, as both diseases progress, autophagy can become impaired leading to exacerbation of both pathological conditions and progression into HCC. Due to the significance of impaired autophagy in these diseases, there is increased interest in studying pathways and targets involved in maintaining efficient autophagic functions as potential therapeutic targets. In this review, we summarize how impaired autophagy affects liver function and contributes to NAFLD, AFLD, and HCC progression. We will also explore how recent discoveries could provide novel therapeutic opportunities to effectively treat these diseases.

Conflict of interest statement

The authors declare that they have no competing interests.

Copyright © 2021 Suryakant Niture et al.

Figures

Figure 1
Figure 1
Schematic model represents the overview of the autophagy process. Molecular regulation of the autophagic process in normal and starvation conditions is presented. In the presence of sufficient nutrients, activation of mTOR inhibits the ULK1 complex, whereas, under conditions of nutrient starvation, AMPK inhibits mTOR and activates the ULK1 and PI3KC3 complex leading to initiation of phagophore biosynthesis. During autophagosome maturation, cargo recruitment takes place through the recruitment of ATGs and LC3, and mature autophagosome formation occurs. Ultimately, the autophagosome fuses with a lysosome, facilitated by Rab7 and LAMP proteins. The fully functional autolysosome then degrades the autolysosomal cargo and releases the degradation products into the cytosol for recycling.
Figure 2
Figure 2
Schematic model represents the molecular mechanisms and dysregulation of autophagy components in a high-fat diet (HFD)/obesity-induced impaired autophagic function in NAFLD. HFD-/obesity-mediated activation of SIRT3 inactivates AMPK, mTORC1, and ULK1 complex leading to inhibition of phagophore formation. A high fatty acid diet upregulates Rubicon expression, increasing its interaction with Beclin 1 and decreasing autophagosome-lysosome fusion. HFD/obesity decreases the expression and activities of cathepsin family enzymes and downregulates autolysosomal proteolysis. HFD/obesity induces changes in the membrane lipid composition of the lysosome, affects autophagosomal-lysosomal acidification, and inhibits fusion of the autophagosome with the lysosome.
Figure 3
Figure 3
Schematic model represents the molecular role of acute and chronic intake of alcohol in the induction of autophagy/impaired autophagy in AFLD. Acute ethanol induces ADH- and CYP2E1-mediated ROS production that inactivates ATG4B protein and induces autophagy. Acute consumption of alcohol inhibits AKT and mTORC1 complex and increases FoxO3a- and TFEB-mediated expression of ATG5, ATG7, Beclin 1, and ULK1 proteins upregulating autophagosomal-lysosomal fusion and functional autophagy. In contrast, chronic intake/consumption of alcohol inactivates AMPK but activates the mTORC1 complex which in turn inactivates the ULK1 complex and inhibits phagophore formation. Moreover, chronic consumption of alcohol downregulates the nuclear localization of TFEB, reduces expression of Beclin-1, and ATG5 that inhibits the phagophore to autophagosome transition. Chronic alcohol also inhibits Dynamin 2, disturbs the transportation of Rab7 into the lysosomal membrane, and impairs autophagosomal-lysosomal fusion.
Figure 4
Figure 4
Schematic model represents the role of functional and impaired autophagy in the modulation of NAFLD, AFLD, and HCC. Functional autophagy can reverse hepatic steatosis, NASH, or hepatitis by the degradation of lipid droplets in the initial stages of NAFLD and acute AFLD. When a functional autophagic process is unable to process the overloaded-lipid content in the liver, particularly in chronic NAFLD and AFLD, defective autophagy exists. Due to defective/impaired autophagic function (increasing expression of p62, LC3, Rab7, and Glypican-3), NASH progresses to fibrosis/cirrhosis and subsequently to HCC.

References

    1. Yorimitsu T., Klionsky D. J. Autophagy: molecular machinery for self-eating. Cell Death and Differentiation. 2005;12(2):1542–1552. doi: 10.1038/sj.cdd.4401765.
    1. Ciechanover A., Orian A., Schwartz A. L. Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays. 2000;22(5):442–451. doi: 10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>;2-Q.
    1. Mari M., Tooze S. A., Reggiori F. The puzzling origin of the autophagosomal membrane. F1000 Biology Reports. 2011;3:p. 25. doi: 10.3410/b3-25.
    1. Yang J., Zhou R., Ma Z. Autophagy and energy metabolism. Advances in Experimental Medicine and Biology. 2019;1206:329–357. doi: 10.1007/978-981-15-0602-4_16.
    1. Dossou A. S., Basu A. The emerging roles of mTORC1 in macromanaging autophagy. Cancers (Basel) 2019;11(10):p. 1422. doi: 10.3390/cancers11101422.
    1. Bjorkoy G., Lamark T., Brech A., et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. The Journal of Cell Biology. 2005;171(4):603–614. doi: 10.1083/jcb.200507002.
    1. Bhutia S. K., Praharaj P. P., Bhol C. S., et al. Monitoring and measuring mammalian autophagy. Methods in Molecular Biology. 2019;1854:209–222. doi: 10.1007/7651_2018_159.
    1. Zhang X. J., Chen S., Huang K. X., Le W. D. Why should autophagic flux be assessed? Acta Pharmacologica Sinica. 2013;34(5):595–599. doi: 10.1038/aps.2012.184.
    1. Codogno P., Mehrpour M., Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self- eating? Nature Reviews. Molecular Cell Biology. 2011;13(1):7–12. doi: 10.1038/nrm3249.
    1. Mizumura K., Choi A. M., Ryter S. W. Emerging role of selective autophagy in human diseases. Frontiers in Pharmacology. 2014;5:p. 244. doi: 10.3389/fphar.2014.00244.
    1. Youle R. J., Narendra D. P. Mechanisms of mitophagy. Nature Reviews. Molecular Cell Biology. 2011;12(1):9–14. doi: 10.1038/nrm3028.
    1. Yamamoto A., Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiology of Disease. 2011;43(1):17–28. doi: 10.1016/j.nbd.2010.08.015.
    1. Kounakis K., Chaniotakis M., Markaki M., Tavernarakis N. Emerging roles of lipophagy in health and disease. Frontiers in Cell and Development Biology. 2019;7:p. 185. doi: 10.3389/fcell.2019.00185.
    1. Levine B., Mizushima N., Virgin H. W. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–335. doi: 10.1038/nature09782.
    1. Sharma V., Verma S., Seranova E., Sarkar S., Kumar D. Selective autophagy and xenophagy in infection and disease. Frontiers in Cell and Development Biology. 2018;6:p. 147. doi: 10.3389/fcell.2018.00147.
    1. Cloonan S. M., Lam H. C., Ryter S. W., Choi A. M. “Ciliophagy”: the consumption of cilia components by autophagy. Autophagy. 2014;10(3):532–534. doi: 10.4161/auto.27641.
    1. Stolz A., Ernst A., Dikic I. Cargo recognition and trafficking in selective autophagy. Nature Cell Biology. 2014;16(6):495–501. doi: 10.1038/ncb2979.
    1. Saha S., Panigrahi D. P., Patil S., Bhutia S. K. Autophagy in health and disease: a comprehensive review. Biomedicine & Pharmacotherapy. 2018;104:485–495. doi: 10.1016/j.biopha.2018.05.007.
    1. Akkoc Y., Gozuacik D. Autophagy and liver cancer. The Turkish Journal of Gastroenterology. 2018;29(3):270–282. doi: 10.5152/tjg.2018.150318.
    1. Rinella M. E. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313(22):2263–2273. doi: 10.1001/jama.2015.5370.
    1. White D. L., Kanwal F., el–Serag H. B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clinical Gastroenterology and Hepatology. 2012;10(12):1342–1359.e2. doi: 10.1016/j.cgh.2012.10.001.
    1. Ke P. Y. Diverse functions of autophagy in liver physiology and liver diseases. International Journal of Molecular Sciences. 2019;20(2):p. 300. doi: 10.3390/ijms20020300.
    1. Kwanten W. J., Martinet W., Michielsen P. P., Francque S. M. Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue. World Journal of Gastroenterology. 2014;20(23):7325–7338. doi: 10.3748/wjg.v20.i23.7325.
    1. Michelotti G. A., Machado M. V., Diehl A. M. NAFLD, NASH and liver cancer. Nature Reviews. Gastroenterology & Hepatology. 2013;10(11):656–665. doi: 10.1038/nrgastro.2013.183.
    1. Jansen H. J., van Essen P., Koenen T., et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology. 2012;153(12):5866–5874. doi: 10.1210/en.2012-1625.
    1. Dong H., Czaja M. J. Regulation of lipid droplets by autophagy. Trends in Endocrinology and Metabolism. 2011;22(6):234–240. doi: 10.1016/j.tem.2011.02.003.
    1. Ohsaki Y., Cheng J., Fujita A., Tokumoto T., Fujimoto T. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Molecular Biology of the Cell. 2006;17(6):2674–2683. doi: 10.1091/mbc.e05-07-0659.
    1. Harada M., Hanada S., Toivola D. M., Ghori N., Omary M. B. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology. 2008;47(6):2026–2035. doi: 10.1002/hep.22294.
    1. Singh R., Kaushik S., Wang Y., et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–1135. doi: 10.1038/nature07976.
    1. Liu K., Zhao E., Ilyas G., et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11(2):271–284. doi: 10.1080/15548627.2015.1009787.
    1. Noureddin M., Yates K. P., Vaughn I. A., et al. Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology. 2013;58(5):1644–1654. doi: 10.1002/hep.26465.
    1. Hammoutene A., Biquard L., Lasselin J., et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. Journal of Hepatology. 2020;72(3):528–538. doi: 10.1016/j.jhep.2019.10.028.
    1. Yamamoto T., Takabatake Y., Takahashi A., et al. High-fat diet-induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. Journal of the American Society of Nephrology. 2017;28(5):1534–1551. doi: 10.1681/ASN.2016070731.
    1. Fukada H., Yamashina S., Izumi K., et al. Suppression of autophagy sensitizes Kupffer cells to endotoxin. Hepatology Research. 2012;42(11):1112–1118. doi: 10.1111/j.1872-034X.2012.01024.x.
    1. Yan S., Huda N., Khambu B., Yin X. M. Relevance of autophagy to fatty liver diseases and potential therapeutic applications. Amino Acids. 2017;49(12):1965–1979. doi: 10.1007/s00726-017-2429-y.
    1. Kashima J., Shintani-Ishida K., Nakajima M., et al. Immunohistochemical study of the autophagy marker microtubule-associated protein 1 light chain 3 in normal and steatotic human livers. Hepatology Research. 2014;44(7):779–787. doi: 10.1111/hepr.12183.
    1. González-Rodríguez Á., Mayoral R., Agra N., et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death & Disease. 2014;5(4):e1179–e1179. doi: 10.1038/cddis.2014.162.
    1. Carotti S., Aquilano K., Zalfa F., et al. Lipophagy impairment is associated with disease progression in NAFLD. Frontiers in Physiology. 2020;11(850) doi: 10.3389/fphys.2020.00850.
    1. Grefhorst A., van de Peppel I. P., Larsen L. E., Jonker J. W., Holleboom A. G. The role of lipophagy in the development and treatment of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2020;11, article 601627
    1. Yang L., Li P., Fu S., Calay E. S., Hotamisligil G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metabolism. 2010;11(6):467–478. doi: 10.1016/j.cmet.2010.04.005.
    1. Guan H. P., Goldstein J. L., Brown M. S., Liang G. Accelerated fatty acid oxidation in muscle averts fasting-induced hepatic steatosis in SJL/J mice. The Journal of Biological Chemistry. 2009;284(36):24644–24652. doi: 10.1074/jbc.M109.034397.
    1. Gan S. K., Watts G. F. Is adipose tissue lipolysis always an adaptive response to starvation?: implications for non-alcoholic fatty liver disease. Clinical Science (London, England) 2008;114(8):543–545. doi: 10.1042/CS20070461.
    1. Ma D., Molusky M. M., Song J., et al. Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Molecular Endocrinology. 2013;27(10):1643–1654. doi: 10.1210/me.2013-1153.
    1. Saito T., Kuma A., Sugiura Y., et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nature Communications. 2019;10(1):p. 1567. doi: 10.1038/s41467-019-08829-3.
    1. Schneider J. L., Cuervo A. M. Liver autophagy: much more than just taking out the trash. Nature Reviews. Gastroenterology & Hepatology. 2014;11(3):187–200. doi: 10.1038/nrgastro.2013.211.
    1. Czaja M. J., Ding W. X., Donohue T. M., Jr., et al. Functions of autophagy in normal and diseased liver. Autophagy. 2013;9(8):1131–1158. doi: 10.4161/auto.25063.
    1. Czaja M. J. Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology. 2011;140(7):1895–1908.
    1. Khambu B., Yan S., Huda N., Liu G., Yin X. M. Autophagy in non-alcoholic fatty liver disease and alcoholic liver disease. Liver Research. 2018;2(3):112–119. doi: 10.1016/j.livres.2018.09.004.
    1. Yang H., Ni H. M., Ding W. X. Emerging players in autophagy deficiency-induced liver injury and tumorigenesis. Gene Expression. 2019;19(3):229–234. doi: 10.3727/105221619X15486875608177.
    1. Ye X., Zhou X. J., Zhang H. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Frontiers in Immunology. 2018;9:p. 2334. doi: 10.3389/fimmu.2018.02334.
    1. Zhao Q., Guo Z., Deng W., et al. Calpain 2-mediated autophagy defect increases susceptibility of fatty livers to ischemia-reperfusion injury. Cell Death & Disease. 2016;7(4, article e2186) doi: 10.1038/cddis.2016.66.
    1. Gual P., Le Marchand-Brustel Y., Tanti J. F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 2005;87(1):99–109. doi: 10.1016/j.biochi.2004.10.019.
    1. Liu H. Y., Han J., Cao S. Y., et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: The Journal of Biological Chemistry. 2009;284(45):31484–31492. doi: 10.1074/jbc.M109.033936.
    1. Inami Y., Yamashina S., Izumi K., et al. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochemical and Biophysical Research Communications. 2011;412(4):618–625. doi: 10.1016/j.bbrc.2011.08.012.
    1. Fukuo Y., Yamashina S., Sonoue H., et al. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatology Research. 2014;44(9):1026–1036. doi: 10.1111/hepr.12282.
    1. Bento C. F., Renna M., Ghislat G., et al. Mammalian autophagy: how does it work? Annual Review of Biochemistry. 2016;85(1):685–713. doi: 10.1146/annurev-biochem-060815-014556.
    1. Koga H., Kaushik S., Cuervo A. M. Altered lipid content inhibits autophagic vesicular fusion. The FASEB Journal. 2010;24(8):3052–3065. doi: 10.1096/fj.09-144519.
    1. Tanaka S., Hikita H., Tatsumi T., et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 2016;64(6):1994–2014. doi: 10.1002/hep.28820.
    1. Park H. W., Park H., Semple I. A., et al. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nature Communications. 2014;5(1):p. 4834. doi: 10.1038/ncomms5834.
    1. Wang X., Zhang X., Chu E. S. H., et al. Defective lysosomal clearance of autophagosomes and its clinical implications in nonalcoholic steatohepatitis. The FASEB Journal. 2018;32(1):37–51. doi: 10.1096/fj.201601393R.
    1. Zubiete-Franco I., Garcia-Rodriguez J. L., Martinez-Una M., et al. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. Journal of Hepatology. 2016;64(2):409–418. doi: 10.1016/j.jhep.2015.08.037.
    1. Hur J. H., Park S. Y., Dall'Armi C., et al. Phospholipase D1 deficiency in mice causes nonalcoholic fatty liver disease via an autophagy defect. Scientific Reports. 2016;6(1):p. 39170. doi: 10.1038/srep39170.
    1. Li S., Dou X., Ning H., et al. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology. 2017;66(3):936–952. doi: 10.1002/hep.29229.
    1. Cho C. S., Park H. W., Ho A., et al. Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1-mediated p62/sequestosome 1 phosphorylation. Hepatology. 2018;68(4):1331–1346. doi: 10.1002/hep.29742.
    1. Willy J. A., Young S. K., Mosley A. L., et al. Function of inhibitor of Bruton's tyrosine kinase isoform α (IBTKα) in nonalcoholic steatohepatitis links autophagy and the unfolded protein response. The Journal of Biological Chemistry. 2017;292(34):14050–14065. doi: 10.1074/jbc.M117.799304.
    1. Sardiello M. Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases. Annals of the New York Academy of Sciences. 2016;1371(1):3–14. doi: 10.1111/nyas.13131.
    1. Wang C., Niederstrasser H., Douglas P. M., et al. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nature Communications. 2017;8(1):p. 2270. doi: 10.1038/s41467-017-02332-3.
    1. Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Research & Health. 2006;29(4):245–254.
    1. Dey A., Cederbaum A. I. Alcohol and oxidative liver injury. Hepatology. 2006;43(S1):S63–S74. doi: 10.1002/hep.20957.
    1. Lakshman R., Shah R., Reyes-Gordillo K., Varatharajalu R. Synergy between NAFLD and AFLD and potential biomarkers. Clinics and Research in Hepatology and Gastroenterology. 2015;39(1):S29–S34. doi: 10.1016/j.clinre.2015.05.007.
    1. Prado V., Caballeria J., Vargas V., Bataller R., Altamirano J. Alcoholic hepatitis: how far are we and where are we going? Annals of Hepatology. 2016;15(4):463–473.
    1. Osna N. A., Donohue T. M., Jr., Kharbanda K. K. Alcoholic liver disease: pathogenesis and current management. Alcohol Research: Current Reviews. 2017;38(2):147–161.
    1. Thomes P. G., Trambly C. S., Fox H. S., Tuma D. J., Donohue T. M., Jr. Acute and chronic ethanol administration differentially modulate hepatic autophagy and transcription factor EB. Alcoholism, Clinical and Experimental Research. 2015;39(12):2354–2363. doi: 10.1111/acer.12904.
    1. Chao X., Wang S., Zhao K., et al. Impaired TFEB-mediated lysosome biogenesis and autophagy promote chronic ethanol-induced liver injury and steatosis in mice. Gastroenterology. 2018;155(3):865–879.e12. doi: 10.1053/j.gastro.2018.05.027.
    1. Lu Y., Cederbaum A. I. Autophagy protects against CYP2E1/chronic ethanol-induced hepatotoxicity. Biomolecules. 2015;5(4):2659–2674. doi: 10.3390/biom5042659.
    1. Ding W. X., Li M., Chen X., et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology. 2010;139(5):1740–1752. doi: 10.1053/j.gastro.2010.07.041.
    1. Niture S., Gyamfi M. A., Lin M., et al. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death & Disease. 2020;11(3):p. 178. doi: 10.1038/s41419-020-2369-4.
    1. Settembre C., Di Malta C., Polito V. A., et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–1433. doi: 10.1126/science.1204592.
    1. Nepal S., Park P. H. Activation of autophagy by globular adiponectin attenuates ethanol-induced apoptosis in HepG2 cells: involvement of AMPK/FoxO3A axis. Biochimica et Biophysica Acta. 2013;1833(10):2111–2125. doi: 10.1016/j.bbamcr.2013.05.013.
    1. Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO Journal. 2007;26(7):1749–1760. doi: 10.1038/sj.emboj.7601623.
    1. Ni H. M., Du K., You M., Ding W. X. Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. The American Journal of Pathology. 2013;183(6):1815–1825. doi: 10.1016/j.ajpath.2013.08.011.
    1. Ng F., Tang B. L. Sirtuins’ modulation of autophagy. Journal of Cellular Physiology. 2013;228(12):2262–2270. doi: 10.1002/jcp.24399.
    1. Banreti A., Sass M., Graba Y. The emerging role of acetylation in the regulation of autophagy. Autophagy. 2013;9(6):819–829. doi: 10.4161/auto.23908.
    1. Ran M., Chen H., Liang B., et al. Alcohol-induced autophagy via upregulation of PIASy promotes HCV replication in human hepatoma cells. Cell Death & Disease. 2018;9(9):p. 898. doi: 10.1038/s41419-018-0845-x.
    1. Guo R., Xu X., Babcock S. A., Zhang Y., Ren J. Aldehyde dedydrogenase-2 plays a beneficial role in ameliorating chronic alcohol-induced hepatic steatosis and inflammation through regulation of autophagy. Journal of Hepatology. 2015;62(3):647–656. doi: 10.1016/j.jhep.2014.10.009.
    1. Lin C. W., Zhang H., Li M., et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. Journal of Hepatology. 2013;58(5):993–999. doi: 10.1016/j.jhep.2013.01.011.
    1. You M., Matsumoto M., Pacold C. M., Cho W. K., Crabb D. W. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology. 2004;127(6):1798–1808. doi: 10.1053/j.gastro.2004.09.049.
    1. Menk M., Graw J. A., Poyraz D., Mobius N., Spies C. D., von Haefen C. Chronic alcohol consumption inhibits autophagy and promotes apoptosis in the liver. International Journal of Medical Sciences. 2018;15(7):682–688. doi: 10.7150/ijms.25393.
    1. Rasineni K., Donohue T. M., Jr., Thomes P. G., et al. Ethanol-induced steatosis involves impairment of lipophagy, associated with reduced Dynamin2 activity. Hepatology Communications. 2017;1(6):501–512. doi: 10.1002/hep4.1063.
    1. Schulze R. J., Rasineni K., Weller S. G., et al. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatology Communications. 2017;1(2):140–152. doi: 10.1002/hep4.1021.
    1. Kharbanda K. K., McVicker D. L., Zetterman R. K., Donohue T. M., Jr. Ethanol consumption alters trafficking of lysosomal enzymes and affects the processing of procathepsin L in rat liver. Biochimica et Biophysica Acta. 1996;1291(1):45–52. doi: 10.1016/0304-4165(96)00043-8.
    1. Zatloukal K., French S. W., Stumptner C., et al. From Mallory to Mallory-Denk bodies: what, how and why? Experimental Cell Research. 2007;313(10):2033–2049. doi: 10.1016/j.yexcr.2007.04.024.
    1. Pollard M. S., Tucker J. S., Green H. D., Jr. Changes in adult alcohol use and consequences during the COVID-19 pandemic in the US. JAMA Network Open. 2020;3(9, article e2022942) doi: 10.1001/jamanetworkopen.2020.22942.
    1. Singh S. S., Vats S., Chia A. Y., et al. Dual role of autophagy in hallmarks of cancer. Oncogene. 2018;37(9):1142–1158. doi: 10.1038/s41388-017-0046-6.
    1. Yazdani H. O., Huang H., Tsung A. Autophagy: dual response in the development of hepatocellular carcinoma. Cell. 2019;8(2)
    1. Xue F., Hu L., Ge R., et al. Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation. Cancer Letters. 2016;371(1):38–47. doi: 10.1016/j.canlet.2015.11.022.
    1. Lee Y. J., Jang B. K. The role of autophagy in hepatocellular carcinoma. International Journal of Molecular Sciences. 2015;16(11):26629–26643. doi: 10.3390/ijms161125984.
    1. Liu L., Liao J. Z., He X. X., Li P. Y. The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget. 2017;8(34):57707–57722. doi: 10.18632/oncotarget.17202.
    1. Bao L., Chandra P. K., Moroz K., et al. Impaired autophagy response in human hepatocellular carcinoma. Experimental and Molecular Pathology. 2014;96(2):149–154. doi: 10.1016/j.yexmp.2013.12.002.
    1. Tian Y., Kuo C. F., Sir D., et al. Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis. Cell Death and Differentiation. 2015;22(6):1025–1034. doi: 10.1038/cdd.2014.201.
    1. Umemura A., He F., Taniguchi K., et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell. 2016;29(6):935–948. doi: 10.1016/j.ccell.2016.04.006.
    1. Kessler S. M., Laggai S., Barghash A., et al. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death & Disease. 2015;6(10, article e1894) doi: 10.1038/cddis.2015.241.
    1. Ji E., Kim C., Kang H., et al. RNA binding protein HuR promotes autophagosome formation by regulating expression of autophagy-related proteins 5, 12, and 16 in human hepatocellular carcinoma cells. Molecular and Cellular Biology. 2019;39(6) doi: 10.1128/MCB.00508-18.
    1. Takamura A., Komatsu M., Hara T., et al. Autophagy-deficient mice develop multiple liver tumors. Genes & Development. 2011;25(8):795–800. doi: 10.1101/gad.2016211.
    1. Yue Z., Jin S., Yang C., Levine A. J., Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(25):15077–15082. doi: 10.1073/pnas.2436255100.
    1. Cianfanelli V., Fuoco C., Lorente M., et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nature Cell Biology. 2015;17(1):20–30. doi: 10.1038/ncb3072.
    1. Feng X., Jia Y., Zhang Y., et al. Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy. 2019;15(7):1130–1149. doi: 10.1080/15548627.2019.1570063.
    1. Chava S., Lee C., Aydin Y., et al. Chaperone-mediated autophagy compensates for impaired macroautophagy in the cirrhotic liver to promote hepatocellular carcinoma. Oncotarget. 2017;8(25):40019–40036. doi: 10.18632/oncotarget.16685.
    1. Shimizu S., Takehara T., Hikita H., et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. International Journal of Cancer. 2012;131(3):548–557. doi: 10.1002/ijc.26374.
    1. Lu L., Li Y., Kim S. M., et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(4):1437–1442. doi: 10.1073/pnas.0911427107.
    1. Lee Y. A., Noon L. A., Akat K. M., et al. Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nature Communications. 2018;9(1):p. 4962. doi: 10.1038/s41467-018-07338-z.
    1. Wu D. H., Jia C. C., Chen J., et al. Autophagic LC3B overexpression correlates with malignant progression and predicts a poor prognosis in hepatocellular carcinoma. Tumour Biology. 2014;35(12):12225–12233. doi: 10.1007/s13277-014-2531-7.
    1. Meng Y. C., Lou X. L., Yang L. Y., Li D., Hou Y. Q. Role of the autophagy-related marker LC3 expression in hepatocellular carcinoma: a meta-analysis. Journal of Cancer Research and Clinical Oncology. 2020;146(5):1103–1113. doi: 10.1007/s00432-020-03174-1.
    1. Ollinger K., Roberg K. Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxide. The Journal of Biological Chemistry. 1997;272(38):23707–23711. doi: 10.1074/jbc.272.38.23707.
    1. Cuervo A. M., Palmer A., Rivett A. J., Knecht E. Degradation of proteasomes by lysosomes in rat liver. European Journal of Biochemistry. 1995;227(3):792–800. doi: 10.1111/j.1432-1033.1995.tb20203.x.
    1. Schneider P. D., Gorschboth C. M. Limiting ischemic liver injury by interfering with lysosomal autophagy. The Journal of Surgical Research. 1983;34(6):550–554. doi: 10.1016/0022-4804(83)90108-7.
    1. Schwarze P. E., Seglen P. O. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Experimental Cell Research. 1985;157(1):15–28. doi: 10.1016/0014-4827(85)90148-X.
    1. Lardeux B. R., Mortimore G. E. Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. Journal of Biological Chemistry. 1987;262(30):14514–14519. doi: 10.1016/S0021-9258(18)47825-8.
    1. Harada M. Autophagy is involved in the elimination of intracellular inclusions, Mallory-Denk bodies, in hepatocytes. Medical Molecular Morphology. 2010;43(1):13–18. doi: 10.1007/s00795-009-0476-5.
    1. Strnad P., Zatloukal K., Stumptner C., Kulaksiz H., Denk H. Mallory-Denk-bodies: lessons from keratin-containing hepatic inclusion bodies. Biochimica et Biophysica Acta. 2008;1782(12):764–774. doi: 10.1016/j.bbadis.2008.08.008.
    1. Reinke P., David H., Uerlings I., Decker T. Pathology of hepatic peroxisomes in chronic hepatitis B and immunosuppression. Experimental Pathology. 1988;34(2):71–77. doi: 10.1016/S0232-1513(88)80030-6.
    1. Yokota S., Dariush Fahimi H. Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochemistry and Cell Biology. 2009;131(4):455–458. doi: 10.1007/s00418-009-0564-6.
    1. Locci Cubeddu T., Masiello P., Pollera M., Bergamini E. Effects of antilipolytic agents on rat liver peroxisomes and peroxisomal oxidative activities. Biochimica et Biophysica Acta. 1985;839(1):96–104. doi: 10.1016/0304-4165(85)90186-2.
    1. Rodriguez-Enriquez S., Kai Y., Maldonado E., Currin R. T., Lemasters J. J. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy. 2009;5(8):1099–1106. doi: 10.4161/auto.5.8.9825.
    1. Bilanges B., Alliouachene S., Pearce W., et al. Vps34 PI 3-kinase inactivation enhances insulin sensitivity through reprogramming of mitochondrial metabolism. Nature Communications. 2017;8(1):p. 1804. doi: 10.1038/s41467-017-01969-4.
    1. Kwanten W. J., Vandewynckel Y. P., Martinet W., et al. Hepatocellular autophagy modulates the unfolded protein response and fasting-induced steatosis in mice. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2016;311(4):G599–G609. doi: 10.1152/ajpgi.00418.2015.
    1. Cunningham C. C., Coleman W. B., Spach P. I. The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism. Alcohol and Alcoholism. 1990;25(2-3):127–136. doi: 10.1093/oxfordjournals.alcalc.a044987.
    1. Falkenberg M., Larsson N. G., Gustafsson C. M. DNA replication and transcription in mammalian mitochondria. Annual Review of Biochemistry. 2007;76(1):679–699. doi: 10.1146/annurev.biochem.76.060305.152028.
    1. Mantena S. K., King A. L., Andringa K. K., Eccleston H. B., Bailey S. M. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radical Biology & Medicine. 2008;44(7):1259–1272. doi: 10.1016/j.freeradbiomed.2007.12.029.
    1. Ma X., McKeen T., Zhang J., Ding W. X. Role and mechanisms of mitophagy in liver diseases. Cell. 2020;9(4)
    1. Yu X., Xu Y., Zhang S., et al. Quercetin attenuates chronic ethanol-induced hepatic mitochondrial damage through enhanced mitophagy. Nutrients. 2016;8(1):p. 27. doi: 10.3390/nu8010027.
    1. Gao H., Lv Y., Liu Y., et al. Wolfberry-derived zeaxanthin dipalmitate attenuates ethanol-induced hepatic damage. Molecular Nutrition & Food Research. 2019;63(11, article e1801339) doi: 10.1002/mnfr.201801339.
    1. Ait-Goughoulte M., Kanda T., Meyer K., Ryerse J. S., Ray R. B., Ray R. Hepatitis C virus genotype 1a growth and induction of autophagy. Journal of Virology. 2008;82(5):2241–2249. doi: 10.1128/JVI.02093-07.
    1. Sir D., Chen W. L., Choi J., Wakita T., Yen T. S., Ou J. H. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology. 2008;48(4):1054–1061. doi: 10.1002/hep.22464.
    1. Guevin C., Manna D., Belanger C., Konan K. V., Mak P., Labonte P. Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology. 2010;405(1):1–7. doi: 10.1016/j.virol.2010.05.032.
    1. Kim J. Y., Wang L., Lee J., Ou J. J. Hepatitis C virus induces the localization of lipid rafts to autophagosomes for its RNA replication. Journal of Virology. 2017;91(20) doi: 10.1128/JVI.00541-17.
    1. Sir D., Kuo C. F., Tian Y., et al. Replication of hepatitis C virus RNA on autophagosomal membranes. The Journal of Biological Chemistry. 2012;287(22):18036–18043. doi: 10.1074/jbc.M111.320085.
    1. Paul D., Hoppe S., Saher G., Krijnse-Locker J., Bartenschlager R. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. Journal of Virology. 2013;87(19):10612–10627. doi: 10.1128/JVI.01370-13.
    1. Romero-Brey I., Merz A., Chiramel A., et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathogens. 2012;8(12, article e1003056) doi: 10.1371/journal.ppat.1003056.
    1. Petherick K. J., Conway O. J., Mpamhanga C., et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. The Journal of Biological Chemistry. 2015;290(48):p. 28726. doi: 10.1074/jbc.A114.627778.
    1. Egan D. F., Chun M. G., Vamos M., et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Molecular Cell. 2015;59(2):285–297. doi: 10.1016/j.molcel.2015.05.031.
    1. Pasquier B. Autophagy inhibitors. Cellular and Molecular Life Sciences. 2016;73(5):985–1001. doi: 10.1007/s00018-015-2104-y.
    1. Li M., Khambu B., Zhang H., et al. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. The Journal of Biological Chemistry. 2013;288(50):35769–35780. doi: 10.1074/jbc.M113.511212.
    1. O'Neill P. M., Bray P. G., Hawley S. R., Ward S. A., Park B. K. 4-Aminoquinolines--past, present, and future; a chemical perspective. Pharmacology & Therapeutics. 1998;77(1):29–58. doi: 10.1016/S0163-7258(97)00084-3.
    1. Liu T., Zhang J., Li K., Deng L., Wang H. Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy. Frontiers in Pharmacology. 2020;11:p. 408. doi: 10.3389/fphar.2020.00408.
    1. Amaravadi R. K., Yu D., Lum J. J., et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. The Journal of Clinical Investigation. 2007;117(2):326–336. doi: 10.1172/JCI28833.
    1. Perez-Hernandez M., Arias A., Martinez-Garcia D., Perez-Tomas R., Quesada R., Soto-Cerrato V. Targeting autophagy for cancer treatment and tumor chemosensitization. Cancers (Basel) 2019;11(10):p. 1599. doi: 10.3390/cancers11101599.
    1. Peng Y. F., Shi Y. H., Ding Z. B., et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9(12):2056–2068. doi: 10.4161/auto.26398.
    1. Levine B., Packer M., Codogno P. Development of autophagy inducers in clinical medicine. The Journal of Clinical Investigation. 2015;125(1):14–24. doi: 10.1172/JCI73938.
    1. Amaravadi R. K., Lippincott-Schwartz J., Yin X. M., et al. Principles and current strategies for targeting autophagy for cancer treatment. Clinical Cancer Research. 2011;17(4):654–666. doi: 10.1158/1078-0432.CCR-10-2634.
    1. Zeng T., Zhang C. L., Song F. Y., et al. PI3K/Akt pathway activation was involved in acute ethanol-induced fatty liver in mice. Toxicology. 2012;296(1-3):56–66. doi: 10.1016/j.tox.2012.03.005.
    1. Musso G., Cassader M., Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nature Reviews. Drug Discovery. 2016;15(4):249–274. doi: 10.1038/nrd.2015.3.
    1. Sinha R. A., Farah B. L., Singh B. K., et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology. 2014;59(4):1366–1380. doi: 10.1002/hep.26667.
    1. Zhang Y., Chen M. L., Zhou Y., et al. Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Molecular Nutrition & Food Research. 2015;59(8):1443–1457. doi: 10.1002/mnfr.201500016.
    1. Li R., Guo E., Yang J., et al. 1,25(OH)2D3attenuates hepatic steatosis by inducing autophagy in mice. Obesity (Silver Spring) 2017;25(3):561–571. doi: 10.1002/oby.21757.
    1. Zhang E., Yin S., Song X., Fan L., Hu H. Glycycoumarin inhibits hepatocyte lipoapoptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway. Scientific Reports. 2016;6(1, article 38138) doi: 10.1038/srep38138.
    1. Rose C., Menzies F. M., Renna M., et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease. Human Molecular Genetics. 2010;19(11):2144–2153. doi: 10.1093/hmg/ddq093.
    1. Williams A., Sarkar S., Cuddon P., et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nature Chemical Biology. 2008;4(5):295–305. doi: 10.1038/nchembio.79.
    1. Yang P. S., Wu H. T., Chung H. H., et al. Rilmenidine improves hepatic steatosis through p38-dependent pathway to higher the expression of farnesoid X receptor. Naunyn-Schmiedeberg's Archives of Pharmacology. 2012;385(1):51–56. doi: 10.1007/s00210-011-0691-1.
    1. Jiang P., Mizushima N. Autophagy and human diseases. Cell Research. 2014;24(1):69–79. doi: 10.1038/cr.2013.161.
    1. Amir M., Czaja M. J. Autophagy in nonalcoholic steatohepatitis. Expert Review of Gastroenterology & Hepatology. 2011;5(2):159–166. doi: 10.1586/egh.11.4.
    1. Czaja M. J. Function of autophagy in nonalcoholic fatty liver disease. Digestive Diseases and Sciences. 2016;61(5):1304–1313. doi: 10.1007/s10620-015-4025-x.
    1. Levine B., Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1-2):11–42. doi: 10.1016/j.cell.2018.09.048.
    1. Allaire M., Rautou P. E., Codogno P., Lotersztajn S. Autophagy in liver diseases: time for translation? Journal of Hepatology. 2019;70(5):985–998. doi: 10.1016/j.jhep.2019.01.026.

Source: PubMed

3
Suscribir