Patient compliance with touchdown weight bearing after microfracture treatment of talar osteochondral lesions

Gökhan Polat, Gökhan Karademir, Ekin Akalan, Mehmet Aşık, Mehmet Erdil, Gökhan Polat, Gökhan Karademir, Ekin Akalan, Mehmet Aşık, Mehmet Erdil

Abstract

Background: The aim of this study was to prospectively evaluate the compliance of our patients with a touchdown weight bearing (without supporting any weight on the affected side by only touching the plantar aspect of the foot to the ground to maintain balance to protect the affected side from mechanical loading) postoperative rehabilitation protocol after treatment of talar osteochondral lesion (TOL).

Methods: Fourteen patients, who had been treated with arthroscopic debridement and microfracture, were followed prospectively. The patients were evaluated for weight bearing compliance with using a stationary gait analysis and feedback system at the postoperative first day, first week, third week, and sixth week.

Results: The mean visual analog scale (VAS) scores of the patients at the preoperative, postoperative first day, first week, third week, and sixth weeks were 5.5, 5.9, 3.6, 0.9, and 0.4, respectively. The decrease in VAS scores were statistically significant (p < 0.0001). First postoperative day revealed a mean value of transmitted weight of 4.08% ±0.8 (one non-compliant patient). The mean value was 4.34% ±0.8 at the first postoperative week (two non-compliant patients), 6.95% ±2.3 at the third postoperative week (eight non-compliant patients), and 10.8% ±4.8 at the sixth postoperative week (11 non-compliant patients). In the analysis of data, we found a negative correlation between VAS scores and transmitted weight (Kendall's tau b = -0.445 and p = 0.0228).

Conclusions: Although patients were able to learn and adjust to the touchdown weight bearing gait protocol during the early postoperative period, most patients became non-compliant when their pain was relieved. To prevent this situation of non-compliance, patients should be warned to obey the weight bearing restrictions, and patients should be called for a follow-up at the third postoperative week.

Keywords: Microfracture treatment; Patient compliance; Talar osteochondral lesion; Touchdown weight bearing.

Figures

Fig. 1
Fig. 1
a, b Clinical pictures of a patient (number 6, 21-year-old male) during the analysis of weight bearing at the gait analysis laboratory
Fig. 2
Fig. 2
a Number of patients who were non-compliant with touchdown weight bearing, b Scatter diagram shows the correlation between the VAS score differences in the first and last control, and the difference of weight bearing values between first and last tests

References

    1. Goldberg VM, Caplan AI. Biologic restoration of articular surfaces. AAOS Instr Course Lect. 1999;48:623–7.
    1. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: Surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;(391 Suppl):S362-9. Review. doi:10.1016/S1048-6666(01)80019-7.
    1. Becher C, Driessen A, Thermann H. Microfracture technique for the treatment of articular cartilage lesions of the talus. Orthopade. 2008;37(3):196, 198–203. doi: 10.1007/s00132-008-1213-9.
    1. Li S, Li H, Liu Y, Qu F, Wang J, Liu C. Clinical outcomes of early weight-bearing after arthroscopic microfracture during the treatment of osteochondral lesions of the talus. Chin Med J (Engl) 2014;127(13):2470–4.
    1. Farr J, Cole B, Dhawan A, Kercher J, Sherman S. Clinical cartilage restoration. Evolution and overview. Clin Orthop Relat Res. 2011;469:2696–705. doi: 10.1007/s11999-010-1764-z.
    1. Clanton TO, Johnson NS, Matheny LM. Outcomes following microfracture in grade 3 and 4 articular cartilage lesions of the ankle. Foot Ankle Int. 2014;35(8):764–70. doi: 10.1177/1071100714539656.
    1. Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18(2):238–46. doi: 10.1007/s00167-009-0942-6.
    1. Van Bergen CJ, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GM, van Dijk CN. Arthroscopic treatment of osteochondral defects of the talus: outcomes at eight to twenty years of follow-up. J Bone Joint Surg Am. 2013;95(6):519–25. doi: 10.2106/JBJS.L.00675.
    1. Savage-Elliott I, Ross KA, Smyth NA, Murawski CD, Kennedy JG. Osteochondral lesions of the talus: a current concepts review and evidence-based treatment paradigm. Foot Ankle Spec. 2014;7(5):414–22. doi: 10.1177/1938640014543362.
    1. Hurst JM, Steadman JR, O’Brien L, Rodkey WG, Briggs KK. Rehabilitation following microfracture for chondral injury in the knee. Clin Sports Med. 2010;29(2):257–65. doi: 10.1016/j.csm.2009.12.009.
    1. Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL. Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther. 2006;36(10):774–94. doi: 10.2519/jospt.2006.2228.
    1. Van Eekeren IC, Reilingh ML, van Dijk CN. Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. Sports Med. 2012;42(10):857–70.
    1. Choi WJ, Jo J, Lee JW. Osteochondral lesion of the talus: prognostic factors affecting the clinical outcome after arthroscopic marrow stimulation technique. Foot Ankle Clin. 2013;18(1):67–78. doi: 10.1016/j.fcl.2012.12.004.
    1. Assche DV, Caspel DV, Staes F, Saris DB, Bellemans J, Vanlauwe J, Luyten FP. Implementing one standardized rehabilitation protocol following autologous chondrocyte implantation or microfracture in the knee results in comparable physical therapy management. Physiother Theory Pract. 2011;27(2):125–36. doi: 10.3109/09593981003681046.
    1. Lee DH, Lee KB, Jung ST, Seon JK, Kim MS, Sung IH. Comparison of early versus delayed weightbearing outcomes after microfracture for small to midsized osteochondral lesions of the talus. Am J Sports Med. 2012;40(9):2023–8. doi: 10.1177/0363546512455316.
    1. Rubin G, Monder O, Zohar R, Oster A, Konra O, Rozen N. Toe-touch weight bearing: myth or reality? Orthopedics. 2010;33(10):729.
    1. Ruiz FK, Fu MC, Bohl DD, Hustedt JW, Baumgaertner MR, Leslie MP, Grauer JN. Patient compliance with postoperative lower extremity touch-down weight-bearing orders at a level I academic trauma center. Orthopedics. 2014;37(6):e552–6. doi: 10.3928/01477447-20140528-55.
    1. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41:988–1020. .
    1. Pierson, F. Principles and Techniques of Patient Care, Third Edition. Philadelphia: WB Saunders Company; 2002. p.208.
    1. Haller JM, Potter MQ, Kubiak EN. Weight bearing after a periarticular fracture: what is the evidence? Orthop Clin North Am. 2013;44(4):509–19. doi: 10.1016/j.ocl.2013.06.005.
    1. Tveit M, Kärrholm J. Low effectiveness of prescribed partial weight bearing. Continuous recording of vertical loads using a new pressure-sensitive insole. J Rehabil Med. 2001;33(1):42–6. doi: 10.1080/165019701300006533.

Source: PubMed

3
Suscribir