Prevalence and prospective evaluation of cognitive dysfunctions after SARS due to SARS-CoV-2 virus. The COgnitiVID study

C Vialatte de Pémille, A Ray, A Michel, F Stefano, T Yim, C Bruel, M Zuber, C Vialatte de Pémille, A Ray, A Michel, F Stefano, T Yim, C Bruel, M Zuber

Abstract

Objective: COVID-19 due to SARS-CoV-2 virus is a new cause of severe acute respiratory syndrome (SARS). Little is known about the short-term cognitive prognosis for these patients. We prospectively evaluated basic cognitive functions shortly after care in the intensive care unit (ICU) and three months later in post-ICU COVID-19 patients.

Material and methods: We performed a prospective single-center study in our institution in Paris. Patients with SARS-CoV-2 SARS were prospectively recruited via our ICU. Patients were evaluated using standardized cognitive tests at baseline and at three months' follow-up. Our primary endpoint was the evolution of the following five global tests: MMSE, FAB, oral naming test, Dubois five words test and MADRS.

Results: We explored 13 patients at baseline and follow-up. All patients had cognitive impairment at baseline but they all improved at three months, significantly on two of the five global tests after Bonferroni correction for multiple testing: MMSE (median 18 (IQR [15-22]) and 27 (IQR [27-29]) respectively, P=0.002) and FAB test (median 14 (IQR [14-17]) and 17 (IQR [17,18]) respectively, P=0.002).

Conclusions: We report here the first longitudinal data on short-term cognitive impairment after intensive care in COVID-19 patients. We found acute and short-term cognitive impairment but significant improvement at three months. This pattern does not seem to differ from other causes of post-intensive care syndrome.

Keywords: COVID-19; Cognitive disorder; Critical care syndrome; Executive function; SARS-CoV-2.

Copyright © 2022 Elsevier Masson SAS. All rights reserved.

Figures

Fig. 1
Fig. 1
Significantly improved median cognitive scores between baseline and follow-up. Error bars represent interquartile ranges. Black lines represent normal expected scores.

References

    1. Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou C.-Q., He J.-X., et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C., et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382:2268–2270. doi: 10.1056/NEJMc2008597.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55:1621–1626. doi: 10.1212/wnl.55.11.1621.
    1. Azouvi P., Vallat-Azouvi C., Joseph P.-A., Meulemans T., Bertola C., Le Gall D., et al. Executive functions deficits after severe traumatic brain injury: the GREFEX Study. J Head Trauma Rehabil. 2016;31:E10–E20. doi: 10.1097/HTR.0000000000000169.
    1. Dubois B., Touchon J., Portet F., Vellas B., Michel B. 2002. « Les 5 mots », épreuve simple et sensible pour le diagnostic de la maladie d’Alzheimer; p. 4.
    1. Wechsler Adult Intelligence Scale | Fourth Edition n.d. (accessed October 14, 2020).
    1. Burgess P.W., Shallice T. Bizarre responses, rule detection and frontal lobe lesions. Cortex J Devoted Study Nerv Syst Behav. 1996;32:241–259. doi: 10.1016/s0010-9452(96)80049-9.
    1. Spreen O., Spreen P of PO, Strauss E., Spreen P of PE . Oxford University Press; USA: 1998. A compendium of neuropsychological tests: administration, norms, and commentary.
    1. Merck C., Charnallet A., Auriacombe S., Belliard S., Hahn-Barma V., Kremin H., et al. La batterie d’évaluation des connaissances sémantiques du GRECO (BECS-GRECO) : validation et données normatives. Rev Neuropsychol. 2011;3:235–255.
    1. Montgomery S.A., Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry J Ment Sci. 1979;134:382–389. doi: 10.1192/bjp.134.4.382.
    1. Rawal G., Yadav S., Kumar R. Post-intensive care syndrome: an overview. J Transl Intern Med. 2017;5:90–92. doi: 10.1515/jtim-2016-0016.
    1. Pandharipande P.P., Girard T.D., Jackson J.C., Morandi A., Thompson J.L., Pun B.T., et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306–1316. doi: 10.1056/NEJMoa1301372.
    1. Iwashyna T.J., Ely E.W., Smith D.M., Langa K.M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–1794. doi: 10.1001/jama.2010.1553.
    1. Mikkelsen M.E., Christie J.D., Lanken P.N., Biester R.C., Thompson B.T., Bellamy S.L., et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185:1307–1315. doi: 10.1164/rccm.201111-2025OC.
    1. Davydow D.S., Gifford J.M., Desai S.V., Bienvenu O.J., Needham D.M. Depression in general intensive care unit survivors: a systematic review. Intensive Care Med. 2009;35:796–809. doi: 10.1007/s00134-009-1396-5.
    1. Groiss S.J., Balloff C., Elben S., Brandenburger T., Müttel T., Kindgen-Milles D., et al. Prolonged neuropsychological deficits, central nervous system involvement, and brain stem affection after COVID-19 – a case series. Front Neurol. 2020;11:574004. doi: 10.3389/fneur.2020.574004.
    1. Mcloughlin B.C., Miles A., Webb T.E., Knopp P., Eyres C., Fabbri A., et al. Functional and cognitive outcomes after COVID-19 delirium. Eur Geriatr Med. 2020;11:857–862. doi: 10.1007/s41999-020-00353-8.
    1. Bowles K.H., McDonald M., Barrón Y., Kennedy E., O’Connor M., Mikkelsen M. Surviving COVID-19 after hospital discharge: symptom, functional, and adverse outcomes of home health recipients. Ann Intern Med. 2021;174:316–325. doi: 10.7326/M20-5206.
    1. Di Pietro D.A., Comini L., Gazzi L., Luisa A., Vitacca M. Neuropsychological pattern in a series of post-acute COVID-19 patients in a rehabilitation unit: retrospective analysis and correlation with functional outcomes. Int J Environ Res Public Health. 2021;18:5917. doi: 10.3390/ijerph18115917.
    1. Pistarini C., Fiabane E., Houdayer E., Vassallo C., Manera M.R., Alemanno F. Cognitive and emotional disturbances due to COVID-19: an exploratory study in the rehabilitation setting. Front Neurol. 2021;12:643646. doi: 10.3389/fneur.2021.643646.
    1. Delorme C., Paccoud O., Kas A., Hesters A., Bombois S., Shambrook P., et al. Covid-19-related encephalopathy: a case series with brain FDG-PET/CT findings. Eur J Neurol. 2020;27:2651–2657. doi: 10.1111/ene.14478.
    1. Beaud V., Crottaz-Herbette S., Dunet V., Vaucher J., Bernard-Valnet R., Du Pasquier R., et al. Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry. 2020;92:567–568. doi: 10.1136/jnnp-2020-325173.
    1. Barker-Davies R.M., O'Sullivan O., Senaratne K.P.P., Baker P., Cranley M., Dharm-Datta S., et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br J Sports Med. 2020;54:949–959. doi: 10.1136/bjsports-2020-102596.
    1. Rabinovitz B., Jaywant A., Fridman C.B. Neuropsychological functioning in severe acute respiratory disorders caused by the coronavirus: implications for the current COVID-19 pandemic. Clin Neuropsychol. 2020;34:1453–1479. doi: 10.1080/13854046.2020.1803408.

Source: PubMed

3
Suscribir