Challenges of phototherapy for neonatal hyperbilirubinemia (Review)

Juan Wang, Genxin Guo, Aimin Li, Wen-Qi Cai, Xianwang Wang, Juan Wang, Genxin Guo, Aimin Li, Wen-Qi Cai, Xianwang Wang

Abstract

Phototherapy is universally recognized as the first option for treating neonatal jaundice due to its unparalleled efficiency and safety in reducing the high serum free bilirubin levels and limiting its neurotoxic effects. However, several studies have suggested that phototherapy may elicit a series of short- and long-term adverse reactions associated with pediatric diseases, including hemolysis, allergic diseases, DNA damage or even cancer. The aim of the present review was to summarize the etiology, mechanism, associated risks and therapeutic strategies for reducing high neonatal serum bilirubin levels. In order to shed light on the negative effects of phototherapy and to encourage implementation of a reasonable and standardized phototherapy scheme in the clinic, the present review sought to highlight the current understanding of the adverse reactions of phototherapy, as it is necessary to further study the mechanism underlying the development of the adverse effects of phototherapy in infants in order to explore novel therapeutic alternatives.

Keywords: adverse reaction; hyperbilirubinemia; jaundice; neonatal; phototherapy.

Copyright: © Wang et al.

Figures

Figure 1
Figure 1
Schematic illustration of bilirubin metabolism. Aging red blood cells are recognized and phagocytosed by mononuclear macrophages in the circulation, which then release hemoglobin. The released hemoglobin is catabolized to produce heme, which is then reduced and oxidized to bilirubin. Bilirubin formed by this process first binds to plasma albumin and is then transported to the liver as a bilirubin-albumin complex. Next, bilirubin is first separated from albumin and then taken up by hepatocytes. Subsequently, it is combined with ligandins (Y and Z proteins) to form a bilirubin-ligand complex, and is then transported to the smooth endoplasmic reticulum of the hepatocyte, where is conjugated with glucuronic acid to form conjugated bilirubin. Conjugated bilirubin is then released into the intestine with bile, hydrolyzed and reduced to generate bilinogen, the majority of which is excreted with the feces, while a small quantity of bilinogen is reabsorbed into the circulation by intestinal mucosal cells. The majority (~90%) of the reabsorbed bilinogen is discharged into the intestinal cavity with bile, forming the enterohepatic circulation of bilinogen, whereas only a small amount (~10%) enters the systemic circulation, passes through the kidneys and is excreted in the urine.
Figure 2
Figure 2
Mechanism of action of phototherapy for neonatal hyperbilirubinemia. Upon exposure to light, non-polar unconjugated bilirubin (Z,Z-bilirubin) in the skin is converted into water-soluble bilirubin isomers, including Z,E-bilirubin, E,Z-bilirubin, E,E-bilirubin, E,Z-cyclobilirubin and E,E-cyclobilirubin.

References

    1. Mitra S, Rennie J. Neonatal jaundice: Aetiology, diagnosis and treatment. Br J Hosp Med (Lond) 2017;78:699–704. doi: 10.12968/hmed.2017.78.12.699.
    1. Greco C, Arnolda G, Boo NY, Iskander IF, Okolo AA, Rohsiswatmo R, Shapiro SM, Watchko J, Wennberg RP, Tiribelli C, Coda Zabetta CD. Neonatal jaundice in low- and middle-income countries: Lessons and future directions from the 2015 don ostrow trieste yellow retreat. Neonatology. 2016;110:172–180. doi: 10.1159/000445708.
    1. Zhou S, Wu X, Ma A, Zhang M, Liu Y. Analysis of therapeutic effect of intermittent and continuous phototherapy on neonatal hemolytic jaundice. Exp Ther Med. 2019;17:4007–4012. doi: 10.3892/etm.2019.7432.
    1. Deshmukh J, Deshmukh M, Patole S. Probiotics for the management of neonatal hyperbilirubinemia: A systematic review of randomized controlled trials. J Matern Fetal Neonatal Med. 2019;32:154–163. doi: 10.1080/14767058.2017.1369520.
    1. Mojtahedi SY, Izadi A, Seirafi G, Khedmat L, Tavakolizadeh R. Risk factors associated with neonatal jaundice: A cross-sectional study from Iran. Open Access Maced J Med Sci. 2018;6:1387–1393. doi: 10.3889/oamjms.2018.319.
    1. Jiao Y, Jin Y, Meng H, Wen M. An analysis on treatment effect of blue light phototherapy combined with Bifico in treating neonatal hemolytic jaundice. Exp Ther Med. 2018;16:1360–1364. doi: 10.3892/etm.2018.6340.
    1. Ebbesen F, Hansen TWR, Maisels MJ. Update on phototherapy in jaundiced neonates. Curr Pediatr Rev. 2017;13:176–180. doi: 10.2174/1573396313666170718150056.
    1. Arnold C, Tyson JE, Pedroza C, Carlo WA, Stevenson DK, Wong R, Dempsey A, Khan A, Fonseca R, Wyckoff M, et al. Cycled phototherapy dose-finding study for extremely low-birth-weight infants: A randomized clinical trial. JAMA Pediatr. 2020;174:649–656. doi: 10.1001/jamapediatrics.2020.0559.
    1. Roll EB, Christensen T, Gederaas OA. Effects of bilirubin and phototherapy on osmotic fragility and haematoporphyrin-induced photohaemolysis of normal erythrocytes and spherocytes. Acta Paediatr. 2005;94:1443–1447. doi: 10.1111/j.1651-2227.2005.tb01818.x.
    1. El-Abdin MYZ, El-Salam MA, Ibrhim MY, Koraa SSM, Mahmoud E. Phototherapy and DNA changes in full term neonates with hyperbilirubinemia. Egypt J Med Hum Genet. 2012;13:29–35.
    1. Mesbah-Namin SA, Shahidi M, Nakhshab M. An increased genotoxic risk in lymphocytes from phototherapy-treated hyperbilirubinemic neonates. Iran Biomed J. 2017;21:182–189. doi: 10.18869/acadpub.ibj.21.3.182.
    1. Newman TB, Wickremasinghe AC, Walsh EM, Grimes BA, McCulloch CE, Kuzniewicz MW. Retrospective cohort study of phototherapy and childhood cancer in northern california. Pediatrics. 2016;137(e20151354) doi: 10.1542/peds.2015-1354.
    1. Morris BH, Oh W, Tyson JE, Stevenson DK, Phelps DL, O'Shea TM, McDavid GE, Perritt RL, Van Meurs KP, Vohr BR, et al. Aggressive vs conservative phototherapy for infants with extremely low birth weight. N Engl J Med. 2008;359:1885–1896. doi: 10.1056/NEJMoa0803024.
    1. Das S, van Landeghem FKH. Clinicopathological spectrum of bilirubin encephalopathy/kernicterus. Diagnostics (Basel) 2019;9(24) doi: 10.3390/diagnostics9010024.
    1. Alizadeh Taheri P, Sadeghi M, Sajjadian N. Severe neonatal hyperbilirubinemia leading to exchange transfusion. Med J Islam Repub Iran. 2014;28(64)
    1. Ansong-Assoku B, Ankola PA. Neonatal jaundice. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL), 2020. PMID: 30422525.
    1. Kalakonda A, Jenkins BA, John S. Physiology, bilirubin. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL), 2020.
    1. Stokowski LA. Fundamentals of phototherapy for neonatal jaundice. Adv Neonatal Care. 2006;6:303–312. doi: 10.1016/j.adnc.2006.08.004.
    1. Tabrizi SO, Mirghafourvand M, Dost AJ, Mohammad-Alizadeh-Charandabi S, Javadzadeh Y, Seyedi R. Effect of metoclopramide administration to mothers on neonatal bilirubin and maternal prolactin: A randomized, controlled, clinical trial. World J Pediatr. 2019;15:135–142. doi: 10.1007/s12519-018-0217-8.
    1. Olusanya BO, Kaplan M, Hansen TWR. Neonatal hyperbilirubinaemia: A global perspective. Lancet Child Adolesc Health. 2018;2:610–620. doi: 10.1016/S2352-4642(18)30139-1.
    1. Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev. 2020;100:1291–1346. doi: 10.1152/physrev.00004.2019.
    1. Zhou YY, Lee LY, Ng SY, Hia CP, Low KT, Chong YS, Goh DL. UGT1A1 haplotype mutation among Asians in Singapore. Neonatology. 2009;96:150–155. doi: 10.1159/000209851.
    1. Allen D. Neonatal jaundice. Nurs Child Young People. 2016;28(11) doi: 10.7748/ncyp.28.6.11.s15.
    1. Amin SB, Wang H. Unbound unconjugated hyperbilirubinemia is associated with central apnea in premature infants. J Pediatr. 2015;166:571–575. doi: 10.1016/j.jpeds.2014.12.003.
    1. Spoorthi SM, Dandinavar SF, Ratageri VH, Wari PK. Prediction of neonatal hyperbilirubinemia using 1st day serum bilirubin levels. Indian J Pediatr. 2019;86:174–176. doi: 10.1007/s12098-018-2633-0.
    1. Mir SE, van der Geest BAM, Been JV. Management of neonatal jaundice in low- and lower-middle-income countries. BMJ Paediatr Open. 2019;3(e000408) doi: 10.1080/20469047.2019.1707397.
    1. Alkén J, Håkansson S, Ekéus C, Gustafson P, Norman M. Rates of extreme neonatal hyperbilirubinemia and kernicterus in children and adherence to national guidelines for screening, diagnosis, and treatment in Sweden. JAMA Netw Open. 2019;2(e190858) doi: 10.1001/jamanetworkopen.2019.0858.
    1. Aprillia Z, Gayatri D, Waluyanti FT. Sensitivity, specificity, and accuracy of kramer examination of neonatal jaundice: Comparison with total bilirubin serum. Compr Child Adolesc Nurs. 2017;40:88–94. doi: 10.1080/24694193.2017.1386975.
    1. van der Schoor LWE, van Faassen M, Kema I, Baptist DH, Olthuis AJ, Jonker JW, Verkade HJ, Groen H, Hulzebos CV. Blue LED phototherapy in preterm infants: Effects on an oxidative marker of DNA damage. Arch Dis Child Fetal Neonatal Ed. 2020;105:628–633. doi: 10.1136/archdischild-2019-317024.
    1. Karimzadeh P, Fallahi M, Kazemian M, Taslimi Taleghani N, Nouripour S, Radfar M. Bilirubin induced encephalopathy. Iran J Child Neurol. 2020;14:7–19.
    1. Rennie JM, Beer J, Upton M. Learning from claims: Hyperbilirubinaemia and kernicterus. Arch Dis Child Fetal Neonatal Ed. 2019;104:F202–F204. doi: 10.1136/archdischild-2017-314622.
    1. Le Pichon JB, Riordan SM, Watchko J, Shapiro SM. The Neurological sequelae of neonatal hyperbilirubinemia: Definitions, diagnosis and treatment of the kernicterus spectrum disorders (KSDs) Curr Pediatr Rev. 2017;13:199–209. doi: 10.2174/1573396313666170815100214.
    1. Lee BK, Le Ray I, Sun JY, Wikman A, Reilly M, Johansson S. Haemolytic and nonhaemolytic neonatal jaundice have different risk factor profiles. Acta Paediatr. 2016;105:1444–1450. doi: 10.1111/apa.13470.
    1. Dean E. Neonatal jaundice. Nurs Stand. 2016;30(15) doi: 10.7748/ns.30.44.15.s17.
    1. Slusher TM, Zamora TG, Appiah D, Stanke JU, Strand MA, Lee BW, Richardson SB, Keating EM, Siddappa AM, Olusanya BO. Burden of severe neonatal jaundice: A systematic review and meta-analysis. BMJ Paediatr Open. 2017;1(e000105) doi: 10.1136/bmjpo-2017-000105.
    1. Bahr TM, Christensen RD, Agarwal AM, George TI, Bhutani VK. The neonatal acute bilirubin encephalopathy registry (NABER): Background, aims, and protocol. Neonatology. 2019;115:242–246. doi: 10.1159/000495518.
    1. Zheng J, Wei C, Zhao M, Zhao D. Phototherapy is associated with the decrease in serum globulin levels in neonatal hyperbilirubinemia. Biomed Rep. 2019;10:63–69. doi: 10.3892/br.2018.1166.
    1. Woodgate P, Jardine LA. Neonatal jaundice: Phototherapy. BMJ Clin Evid. 2015;2015(0319)
    1. Slusher TM, Zipursky A, Bhutani VK. A global need for affordable neonatal jaundice technologies. Semin Perinatol. 2011;35:185–191. doi: 10.1053/j.semperi.2011.02.014.
    1. Cai A, Qi S, Su Z, Shen H, Yang Y, Cai W, Dai Y. A pilot metabolic profiling study of patients with neonatal jaundice and response to phototherapy. Clin Transl Sci. 2016;9:216–220. doi: 10.1111/cts.12401.
    1. Kale Y, Aydemir O, Celik Ü, Kavurt S, Isikoglu S, Bas AY, Demirel N. Effects of phototherapy using different light sources on oxidant and antioxidant status of neonates with jaundice. Early Hum Dev. 2013;89:957–960. doi: 10.1016/j.earlhumdev.2013.09.013.
    1. Tham EH, Loo EXL, Goh A, Teoh OH, Yap F, Tan KH, Godfrey KM, Van Bever H, Lee BW, Chong YS, Shek LP. Phototherapy for neonatal hyperbilirubinemia and childhood eczema, rhinitis and wheeze. Pediatr Neonatol. 2019;60:28–34. doi: 10.1016/j.pedneo.2018.03.004.
    1. Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology. 2018;159:1992–2007. doi: 10.1210/en.2017-03230.
    1. Waterham M, Bhatia R, Donath S, Molesworth C, Tan K, Stewart M. Phototherapy in transport for neonates with unconjugated hyperbilirubinaemia. J Paediatr Child Health. 2016;52:67–71. doi: 10.1111/jpc.12984.
    1. Donneborg ML, Vandborg PK, Hansen BM, Rodrigo-Domingo M, Ebbesen F. Double versus single intensive phototherapy with LEDs in treatment of neonatal hyperbilirubinemia. J Perinatol. 2018;38:154–158. doi: 10.1038/jp.2017.167.
    1. Ebbesen F, Madsen PH, Vandborg PK, Jakobsen LH, Trydal T, Vreman HJ. Bilirubin isomer distribution in jaundiced neonates during phototherapy with LED light centered at 497 nm (turquoise) vs 459 nm (blue) Pediatr Res. 2016;80:511–515. doi: 10.1038/pr.2016.115.
    1. Itoh S, Okada H, Kuboi T, Kusaka T. Phototherapy for neonatal hyperbilirubinemia. Pediatr Int. 2017;59:959–966. doi: 10.1111/ped.13332.
    1. Faulhaber FRS, Procianoy RS, Silveira RC. Side effects of phototherapy on neonates. Am J Perinatol. 2019;36:252–257. doi: 10.1055/s-0038-1667379.
    1. Altuntas N, Dogan OC, Kislal FM. Effect of phototherapy on neutrophil VCS parameters and white blood cells. J Coll Physicians Surg Pak. 2019;29:453–455. doi: 10.29271/jcpsp.2019.05.453.
    1. Ramy N, Ghany EA, Alsharany W, Nada A, Darwish RK, Rabie WA, Aly H. Jaundice, phototherapy and DNA damage in full-term neonates. J Perinatol. 2016;36:132–136. doi: 10.1038/jp.2015.166.
    1. Wickremasinghe AC, Kuzniewicz MW, Grimes BA, McCulloch CE, Newman TB. Neonatal phototherapy and infantile cancer. Pediatrics. 2016;137(e20151353) doi: 10.1542/peds.2015-1353.
    1. Abedi F, Mirbagher Ajorpaz N, Esalatmanesh S, Rahemi Z, Gilasi HR, Kafaei Atrian M, Hosseinian M. The effect of tactile-kinesthetic stimulation on growth indices of healthy neonates. J Bodyw Mov Ther. 2018;22:308–312. doi: 10.1016/j.jbmt.2017.08.005.
    1. Dalili H, Sheikhi S, Shariat M, Haghnazarian E. Effects of baby massage on neonatal jaundice in healthy Iranian infants: A pilot study. Infant Behav Dev. 2016;42:22–26. doi: 10.1016/j.infbeh.2015.10.009.
    1. Ju SH, Lin CH. The effect of moderate non-hemolytic jaundice and phototherapy on newborn behavior. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1991;32:31–41.
    1. Kavcic P, Rojc B, Dolenc-Groselj L, Claustrat B, Fujs K, Poljak M. The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans. Croat Med J. 2011;52:594–603. doi: 10.3325/cmj.2011.52.594.
    1. Chen A, Du L, Xu Y, Chen L, Wu Y. The effect of blue light exposure on the expression of circadian genes: Bmal1 and cryptochrome 1 in peripheral blood mononuclear cells of jaundiced neonates. Pediatr Res. 2005;58:1180–1184. doi: 10.1203/01.pdr.0000183663.98446.05.
    1. Yeganeh Salehpour M, Mollica A, Momtaz S, Sanadgol N, Farzaei MH. Melatonin and multiple sclerosis: From plausible neuropharmacological mechanisms of action to experimental and clinical evidence. Clin Drug Investig. 2019;39:607–624. doi: 10.1007/s40261-019-00793-6.
    1. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, Pinton P. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(317) doi: 10.1038/s41419-019-1556-7.
    1. Maayan-Metzger A, Yosipovitch G, Hadad E, Sirota L. Transepidermal water loss and skin hydration in preterm infants during phototherapy. Am J Perinatol. 2001;18:393–396. doi: 10.1055/s-2001-18698.
    1. Kumar P, Murki S, Malik GK, Chawla D, Deorari AK, Karthi N, Subramanian S, Sravanthi J, Gaddam P, Singh SN. Light emitting diodes versus compact fluorescent tubes for phototherapy in neonatal jaundice: A multi center randomized controlled trial. Indian Pediatr. 2010;47:131–137. doi: 10.1007/s13312-010-0020-7.
    1. Asghar I, Khan IA, Hassan F. Effect of head covering on phototherapy induced hypocalcemia in term neonates with hyperbilirubinemia: A randomised controlled study. J Neonatal Perinatal Med: October 10, 2020 (Online ahead of print).
    1. Khan M, Malik KA, Bai R. Hypocalcemia in jaundiced neonates receiving phototherapy. Pak J Med Sci. 2016;32:1449–1452. doi: 10.12669/pjms.326.10849.
    1. Gheshmi AN, Naderi S, Homayrani E, Safari B. Prevalence of hypocalcemia after phototherapy among neonates who underwent phototherapy in Koodakan Hospital in Bandar Abbas in 2013. Electron Physician. 2015;7:1387–1390. doi: 10.14661/1387.
    1. Barekatain B, Badiea Z, Hoseini N. The effect of head covering in prevention of phototherapy-induced hypocalcemia in icterus newborns with gestational age less than 35 weeks. Adv Biomed Res. 2016;5(176) doi: 10.4103/2277-9175.190992.
    1. Kargar M, Jamshidi Z, Beheshtipour N, Pishva N, Jamali M. Effect of head covering on phototherapy-induced hypocalcaemia in icterus newborns; a randomized controlled trial. Int J Community Based Nurs Midwifery. 2014;2:121–126.
    1. Shahriarpanah S, Haji Ebrahim Tehrani F, Davati A, Ansari I. Effect of phototherapy on serum level of calcium, magnesium and vitamin D in infants with hyperbilirubinemia. Iran J Pathol. 2018;13:357–362.
    1. Khera S, Gupta R. Incidence of thrombocytopenia following phototherapy in hyperbilirubinemic neonates. Med J Armed Forces India. 2011;67:329–332. doi: 10.1016/S0377-1237(11)60078-6.
    1. LaRusso J, Wilson J, Ceilley R. Phototherapy-induced purpuric eruption in a neonate. J Clin Aesthet Dermatol. 2015;8:46–48.
    1. Jeffrey Maisels M. Phototherapy and skin rashes. Pediatr Dermatol. 2013;30:636–637. doi: 10.1111/pde.12083.
    1. Le TN, Reese J. Bronze baby syndrome. J Pediatr. 2017;188:301–301.e1. doi: 10.1016/j.jpeds.2017.05.005.
    1. Kar S, Mohankar A, Krishnan A. Bronze baby syndrome. Indian Pediatr. 2013;50(624) doi: 10.1007/s13312-013-0161-6.
    1. Ayyappan S, Philip S, Bharathy N, Ramesh V, Kumar CN, Swathi S, Kumar AA. Antioxidant status in neonatal jaundice before and after phototherapy. J Pharm Bioallied Sci. 2015;7 (Suppl 1):S16–S21. doi: 10.4103/0975-7406.155766.
    1. Demirel G, Uras N, Celik IH, Aksoy HT, Oguz SS, Erdeve O, Erel O, Dilmen U. Comparison of total oxidant/antioxidant status in unconjugated hyperbilirubinemia of newborn before and after conventional and LED phototherapy: A prospective randomized controlled trial. Clin Invest Med. 2010;33:335–341. doi: 10.25011/cim.v33i5.14359.
    1. Suzen S, Gurer-Orhan H, Saso L. Detection of reactive oxygen and nitrogen species by electron paramagnetic resonance (EPR) technique. Molecules. 2017;22(181) doi: 10.3390/molecules22010181.
    1. Uhrikova Z, Zibolen M, Javorka K, Chladekova L, Javorka M. Hyperbilirubinemia and phototherapy in newborns: Effects on cardiac autonomic control. Early Hum Dev. 2015;91:351–356. doi: 10.1016/j.earlhumdev.2015.03.009.
    1. Benders MJ, Van Bel F, Van de Bor M. Cardiac output and ductal reopening during phototherapy in preterm infants. Acta Paediatr. 1999;88:1014–1019. doi: 10.1080/08035259950168540.
    1. Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol. 2002;90:40L–48L. doi: 10.1016/s0002-9149(02)02963-6.
    1. Liu GS, Wu H, Wu BQ, Huang RZ, Zhao LH, Wen Y. Effect of phototherapy on blood endothelin and nitric oxide levels: Clinical significance in preterm infants. World J Pediatr. 2008;4:31–35. doi: 10.1007/s12519-008-0006-x.
    1. Benders MJ, van Bel F, van de Bor M. Haemodynamic consequences of phototherapy in term infants. Eur J Pediatr. 1999;158:323–328. doi: 10.1007/s004310051082.
    1. Barefield ES, Dwyer MD, Cassady G. Association of patent ductus arteriosus and phototherapy in infants weighing less than 1000 g. J Perinatol. 1993;13:376–380.
    1. Batenburg WW, Kappers MH, Eikmann MJ, Ramzan SN, de Vries R, Danser AH. Light-induced vs bradykinin-induced relaxation of coronary arteries: Do S-nitrosothiols act as endothelium-derived hyperpolarizing factors? J Hypertens. 2009;27:1631–1640. doi: 10.1097/HJH.0b013e32832bff54.
    1. Bhola K, Foster JP, Osborn DA. Chest shielding for prevention of a haemodynamically significant patent ductus arteriosus in preterm infants receiving phototherapy. Cochrane Database Syst Rev. 2015;(CD009816) doi: 10.1002/14651858.CD009816.pub2.
    1. Hamrick SE, Hansmann G. Patent ductus arteriosus of the preterm infant. Pediatrics. 2010;125:1020–1030. doi: 10.1542/peds.2009-3506.
    1. Mannan J, Amin SB. Meta-analysis of the effect of chest shielding on preventing patent ductus arteriosus in premature infants. Am J Perinatol. 2017;34:359–363. doi: 10.1055/s-0036-1592079.
    1. Travadi J, Simmer K, Ramsay J, Doherty D, Hagan R. Patent ductus arteriosus in extremely preterm infants receiving phototherapy: Does shielding the chest make a difference? A randomized, controlled trial. Acta Paediatr. 2006;95:1418–1423. doi: 10.1080/08035250600771458.
    1. Nakanishi-Ueda T, Majima HJ, Watanabe K, Ueda T, Indo HP, Suenaga S, Hisamitsu T, Ozawa T, Yasuhara H, Koide R. Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells. Free Radic Res. 2013;47:774–780. doi: 10.3109/10715762.2013.829570.
    1. Grimm C, Wenzel A, Williams T, Rol P, Hafezi F, Remé C. Rhodopsin-mediated blue-light damage to the rat retina: Effect of photoreversal of bleaching. Invest Ophthalmol Vis Sci. 2001;42:497–505.
    1. Chen P, Lai Z, Wu Y, Xu L, Cai X, Qiu J, Yang P, Yang M, Zhou P, Zhuang J, et al. Retinal neuron is more sensitive to blue light-induced damage than glia cell due to DNA double-strand breaks. Cells. 2019;8(68) doi: 10.3390/cells8010068.
    1. Kara S, Yalniz-Akkaya Z, Yeniaras A, Örnek F, Bilge YD. Ocular findings on follow-up in children who received phototherapy for neonatal jaundice. J Chin Med Assoc. 2017;80:729–732. doi: 10.1016/j.jcma.2017.08.003.
    1. Lin L, Chen Z, Tang X, Dai F, Wei J, Sun G. 5-Oxo-ETE from nasal epithelial cells upregulates eosinophil cation protein by eosinophils in nasal polyps in vitro. Int Arch Allergy Immunol. 2018;177:107–115. doi: 10.1159/000489819.
    1. Beken S, Aydin B, Zenciroğğlu A, Dilli D, Özkan E, Dursun A, Okumus N. The effects of phototherapy on eosinophil and eosinophilic cationic protein in newborns with hyperbilirubinemia. Fetal Pediatr Pathol. 2014;33:151–156. doi: 10.3109/15513815.2014.883456.
    1. Aspberg S, Dahlquist G, Kahan T, Källén B. Confirmed association between neonatal phototherapy or neonatal icterus and risk of childhood asthma. Pediatr Allergy Immunol. 2010;21:e733–e739. doi: 10.1111/j.1399-3038.2010.01038.x.
    1. Magi S, Piccirillo S, Amoroso S, Lariccia V. Excitatory amino acid transporters (EAATs): Glutamate transport and beyond. Int J Mol Sci. 2019;20(5674) doi: 10.3390/ijms20225674.
    1. Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci USA. 2009;106:5171–5176. doi: 10.1073/pnas.0813132106.
    1. Karadag F, Sengul CB, Enli Y, Karakulah K, Alacam H, Kaptanoglu B, Kalkanci O, Herken H. Relationship between serum bilirubin levels and metabolic syndrome in patients with schizophrenia spectrum disorders. Clin Psychopharmacol Neurosci. 2017;15:153–162. doi: 10.9758/cpn.2017.15.2.153.
    1. Gloria-Bottini F, Bottini E. Is there a role of early neonatal events in susceptibility to allergy? Int J Biomed Sci. 2010;6:8–12.
    1. Ollinger R, Kogler P, Troppmair J, Hermann M, Wurm M, Drasche A, Königsrainer I, Amberger A, Weiss H, Ofner D, et al. Bilirubin inhibits tumor cell growth via activation of ERK. Cell Cycle. 2007;6:3078–3085. doi: 10.4161/cc.6.24.5022.
    1. Rawat V, Bortolussi G, Gazzin S, Tiribelli C, Muro AF. Bilirubin-induced oxidative stress leads to DNA damage in the cerebellum of hyperbilirubinemic neonatal mice and activates DNA double-strand break repair pathways in human cells. Oxid Med Cell Longev. 2018;2018(1801243) doi: 10.1155/2018/1801243.
    1. NaveenKumar SK, Thushara RM, Sundaram MS, Hemshekhar M, Paul M, Thirunavukkarasu C, Basappa Nagaraju G, Raghavan SC, Girish KS, et al. Unconjugated bilirubin exerts pro-apoptotic effect on platelets via p38-MAPK activation. Sci Rep. 2015;5(15045) doi: 10.1038/srep15045.
    1. Aycicek A, Kocyigit A, Erel O, Senturk H. Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants. J Pediatr (Rio J) 2008;84:141–146. doi: 10.2223/JPED.1765.
    1. Gómez-Meda BC, Barros-Hernández A, Guzmán-Bárcenas J, Lemus-Varela Mde L, Zamora-Perez AL, Torres-Mendoza BM, Gallegos-Arreola MP, Armendáriz-Borunda J, Zúñiga-González GM. Effects of blue light phototherapy on DNA integrity in preterm newborns. J Photochem Photobiol B. 2014;141:283–287. doi: 10.1016/j.jphotobiol.2014.09.012.
    1. Tatli MM, Minnet C, Kocyigit A, Karadag A. Phototherapy increases DNA damage in lymphocytes of hyperbilirubinemic neonates. Mutat Res. 2008;654:93–95. doi: 10.1016/j.mrgentox.2007.06.013.
    1. Bulut O, Erek A, Duruyen S. Effects of hyperbilirubinemia on markers of genotoxicity and total oxidant and antioxidant status in newborns. Drug Chem Toxicol. 2020:1–5. doi: 10.1080/01480545.2019.1710182. (Online ahead of print)
    1. Hong B, van den Heuvel AP, Prabhu VV, Zhang S, El-Deiry WS. Targeting tumor suppressor p53 for cancer therapy: Strategies, challenges and opportunities. Curr Drug Targets. 2014;15:80–89. doi: 10.2174/1389450114666140106101412.
    1. Kanapathipillai M. Treating p53 mutant aggregation-associated cancer. Cancers (Basel) 2018;10(154) doi: 10.3390/cancers10060154.
    1. Yahia S, Shabaan A, Gouida M, El-Ghanam D, Eldegla H, El-Bakary A, Abdel-Hady H. Influence of hyperbilirubinemia and phototherapy on markers of genotoxicity and apoptosis in full-term infants. Eur J Pediatr. 2015;174:459–464. doi: 10.1007/s00431-014-2418-z.
    1. Tyson JE, Miller CC. Whether neonatal phototherapy increases the risk of cancer in children is a disturbing unresolved issue. Evid Based Med. 2017;22:39–40. doi: 10.1136/ebmed-2016-110528.
    1. Auger N, Laverdiere C, Ayoub A, Lo E, Luu TM. Neonatal phototherapy and future risk of childhood cancer. Int J Cancer. 2019;145:2061–2069. doi: 10.1002/ijc.32158.
    1. Brewster DH, Tucker JS, Fleming M, Morris C, Stockton DL, Lloyd DJ, Bhattacharya S, Chalmers JW. Risk of skin cancer after neonatal phototherapy: Retrospective cohort study. Arch Dis Child. 2010;95:826–831. doi: 10.1136/adc.2009.179275.
    1. Matichard E, Le Hénanff A, Sanders A, Leguyadec J, Crickx B, Descamps V. Effect of neonatal phototherapy on melanocytic nevus count in children. Arch Dermatol. 2006;142:1599–1604. doi: 10.1001/archderm.142.12.1599.
    1. Auger N, Ayoub A, Lo E, Luu TM. Increased risk of hemangioma after exposure to neonatal phototherapy in infants with predisposing risk factors. Acta Paediatr. 2019;108:1447–1452. doi: 10.1111/apa.14727.
    1. Kanmaz HG, Okur N, Dilli D, Yeşilyurt A, Oğuz ŞS. The effect of phototherapy on sister chromatid exchange with different light density in newborn hyperbilirubinemia. Turk Pediatri Ars. 2017;52:202–207. doi: 10.5152/TurkPediatriArs.2017.5143.
    1. Arnold C, Pedroza C, Tyson JE. Phototherapy in ELBW newborns: Does it work? Is it safe? The evidence from randomized clinical trials. Semin Perinatol. 2014;38:452–464. doi: 10.1053/j.semperi.2014.08.008.
    1. Hansen TW. Let there be light-but should there be less? J Perinatol. 2012;32:649–651. doi: 10.1038/jp.2012.80.
    1. Lamola AA. A pharmacologic view of phototherapy. Clin Perinatol. 2016;43:259–276. doi: 10.1016/j.clp.2016.01.004.
    1. Sisson TR. Photodegradation of riboflavin in neonates. Fed Proc. 1987;46:1883–1885.
    1. Kadalraja R, Patole SK, Muller R, Whitehall JS. Is mesenteric blood flow compromised during phototherapy in preterm neonates? Arch Dis Child Fetal Neonatal Ed. 2004;89(F564) doi: 10.1136/adc.2004.057646.
    1. Raghavan K, Thomas E, Patole S, Muller R. Is phototherapy a risk factor for ileus in high-risk neonates? J Matern Fetal Neonatal Med. 2005;18:129–131. doi: 10.1080/14767050500233076.
    1. Rosenberg K, Mechcatie E. Increased seizure risk after phototherapy for jaundice. Am J Nurs. 2019;119:50–51. doi: 10.1097/01.NAJ.0000552612.04276.7c.
    1. Newman TB, Wu YW, Kuzniewicz MW, Grimes BA, McCulloch CE. Childhood seizures after phototherapy. Pediatrics. 2018;142(e20180648) doi: 10.1542/peds.2018-0648.
    1. Kuboi T, Kusaka T, Okada H, Arioka M, Nii K, Takahashi M, Yamato S, Sadamura T, Jinnai W, Nakano A, Itoh S. Green light-emitting diode phototherapy for neonatal hyperbilirubinemia: Randomized controlled trial. Pediatr Int. 2019;61:465–470. doi: 10.1111/ped.13821.

Source: PubMed

3
Suscribir