The effect of food on the pharmacokinetics of oral ibrutinib in healthy participants and patients with chronic lymphocytic leukemia

Jan de Jong, Juthamas Sukbuntherng, Donna Skee, Joe Murphy, Susan O'Brien, John C Byrd, Danelle James, Peter Hellemans, David J Loury, Juhui Jiao, Vijay Chauhan, Erik Mannaert, Jan de Jong, Juthamas Sukbuntherng, Donna Skee, Joe Murphy, Susan O'Brien, John C Byrd, Danelle James, Peter Hellemans, David J Loury, Juhui Jiao, Vijay Chauhan, Erik Mannaert

Abstract

Purpose: To assess ibrutinib pharmacokinetics under fasted and fed conditions, impact of food-intake timing, and the safety and tolerability.

Methods: Three studies were analyzed. Study 1 was a randomized, open-label, single-dose, four-way crossover study in 44 healthy participants. Study 2 was a randomized, repeat-dose crossover study in 16 patients with previously treated chronic lymphocytic leukemia (CLL). Ibrutinib dose was 420 mg in both studies. Study 3 was an open-label, sequential study to assess the effect of a standard breakfast on ibrutinib 560 mg in eight healthy participants.

Results: Administration of single-dose ibrutinib under fasting conditions (study 1) resulted in approximately 60 % of exposure compared with drug intake either 30 min before, 30 min after (fed), or 2 h after a high-fat meal. Similar food effect was observed (study 3) when ibrutinib was given 30 min before meal. In CLL patients (study 2), the C max and AUC under fasting conditions were 43 and 61 %, respectively, relative to fed conditions. When administered once-daily in uncontrolled food-intake conditions (≥30 min before or 2 h after), exposures were slightly (≈30 %) lower than in fed condition. When corrected for repeated dosing, pharmacokinetic parameters in healthy participants and patients were comparable. Ibrutinib was generally well tolerated in all settings studied.

Conclusions: Ibrutinib administered in fasted condition reduces exposure to approximately 60 % as compared with dosing in proximity to food-intake, regardless of timing/type of meal. Because repeated drug intake in fasted condition is unlikely, no food restrictions may be needed to administer ibrutinib.

Trial registration: ClinicalTrials.gov NCT01105247 NCT01820936 NCT01866033.

Figures

Fig. 1
Fig. 1
Treatment sequence. a Study 1: healthy participants receiving single-dose oral ibrutinib, b study 2: patients with previously treated chronic lymphocytic leukemia receiving repeat-dose oral ibrutinib, c study 3: healthy participants receiving single-dose oral ibrutinib. PK pharmacokinetics. Treatment A = Ibrutinib orally administered after fasting for ≥10 and 4 h before the next food-intake. Treatment B = Ibrutinib orally administered after fasting for ≥10 h and 30 min before a meal. Treatment C = Ibrutinib orally administered 2 h after a meal. Treatment D = Ibrutinib orally administered 30 min after completing a meal. Treatment X = Ibrutinib orally administered at least 30 min before or at least 2 h after a meal. aHealthy participants receiving single-dose study drug. bPatients with previously treated chronic lymphocytic leukemia receiving repeat-dose study drug
Fig. 2
Fig. 2
a Log-linear time versus concentration curve in plasma following 420 and 560 mg oral ibrutinib administration with various meal and meal-time adjustments in healthy participants and patients with chronic lymphocytic leukemia. b Cross-study comparisons of Cmax and AUC in fed and fasting conditions. AUC area under the plasma concentration–time curve, Cmax maximum observed plasma concentration. Treatment A = Ibrutinib orally administered after fasting for ≥10 and 4 h before the next food-intake. Treatment B = Ibrutinib orally administered after fasting for ≥10 h and 30 min before starting a meal. Treatment C = Ibrutinib orally administered 2 h after a meal. Treatment D = Ibrutinib orally administered 30 min after completing a meal. Treatment X = Ibrutinib orally administered at least 30 min before or at least 2 h after a meal. aStudy 2 treatments A and D dose obtained at steady state, all others after single-dose. bDose normalized to a 420 mg dose
Fig. 3
Fig. 3
Correlation between clearance rate of ibrutinib and food effect on AUC

References

    1. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O’Brien S. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42. doi: 10.1056/NEJMoa1215637.
    1. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, Jurczak W, Advani RH, Romaguera JE, Williams ME, Barrientos JC, Chmielowska E, Radford J, Stilgenbauer S, Dreyling M, Jedrzejczak WW, Johnson P, Spurgeon SE, Li L, Zhang L, Newberry K, Ou Z, Cheng N, Fang B, McGreivy J, Clow F, Buggy JJ, Chang BY, Beaupre DM, Kunkel LA, Blum KA. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507–516. doi: 10.1056/NEJMoa1306220.
    1. Dipiro J, Talbert R, Yee G, Matzke G, Wells B, editors. Pharmacotherapy: a pathophysiologic approach. 7. New York: McGraw Hill Medical; 2008. p. 2559.
    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30. doi: 10.3322/caac.21166.
    1. Rinaldi A, Kwee I, Taborelli M, Largo C, Uccella S, Martin V, Poretti G, Gaidano G, Calabrese G, Martinelli G, Baldini L, Pruneri G, Capella C, Zucca E, Cotter FE, Cigudosa JC, Catapano CV, Tibiletti MG, Bertoni F. Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol. 2006;132:303–316. doi: 10.1111/j.1365-2141.2005.05883.x.
    1. Gribben JG, O’Brien S. Update on therapy of chronic lymphocytic leukemia. J Clin Oncol. 2011;29:544–550. doi: 10.1200/JCO.2010.32.3865.
    1. Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, Coutre S, Tam CS, Mulligan SP, Jaeger U, Devereux S, Barr PM, Furman RR, Cymbalista F, Pocock C, Thornton P, Caligaris-Cappio F, Robak T, Delgado J, Schuster SJ, Montillo M, Schuh A, de Vos S, Gill D, Bloor A, Dearden C, Moreno C, Jones JJ, Chu AD, Fardis M, McGreivy J, Clow F, James DF, Hillmen P, RESONATE Investigators Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–223. doi: 10.1056/NEJMoa1400376.
    1. Wierda W, O’Brien S, Wen S, Faderl S, Garcia-Manero G, Thomas D, Do KA, Cortes J, Koller C, Beran M, Ferrajoli A, Giles F, Lerner S, Albitar M, Kantarjian H, Keating M. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol. 2005;23:4070–4078. doi: 10.1200/JCO.2005.12.516.
    1. Byrd JC, Rai K, Peterson BL, Appelbaum FR, Morrison VA, Kolitz JE, Shepherd L, Hines JD, Schiffer CA, Larson RA. Addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood. 2005;105:49–53. doi: 10.1182/blood-2004-03-0796.
    1. Wiestner A. Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood. 2012;120:4684–4691. doi: 10.1182/blood-2012-05-423194.
    1. Wiestner A. Targeting B-Cell receptor signaling for anticancer therapy: the Bruton’s tyrosine kinase inhibitor ibrutinib induces impressive responses in B-cell malignancies. J Clin Oncol. 2013;31:128–130. doi: 10.1200/JCO.2012.44.4281.
    1. Gururajan M, Jennings CD, Bondada S. Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma. J Immunol. 2006;176:5715–5719. doi: 10.4049/jimmunol.176.10.5715.
    1. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118:4313–4320. doi: 10.1182/blood-2011-06-338855.
    1. Satterthwaite AB, Cheroutre H, Khan WN, Sideras P, Witte ON. Btk dosage determines sensitivity to B cell antigen receptor cross-linking. Proc Natl Acad Sci USA. 1997;94:13152–13157. doi: 10.1073/pnas.94.24.13152.
    1. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31:119–132. doi: 10.3109/08830185.2012.664797.
    1. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, Walch E, Wirth T, O’Neill LA. Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem. 2003;278:26258–26264. doi: 10.1074/jbc.M301484200.
    1. Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, Coustan-Smith E, Howard V, Campana D. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. 2009;27:199–227. doi: 10.1146/annurev.immunol.021908.132649.
    1. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107:13075–13080. doi: 10.1073/pnas.1004594107.
    1. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, Flynn J, Jones J, Blum KA, Buggy JJ, Hamdy A, Johnson AJ, Byrd JC. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117:6287–6296. doi: 10.1182/blood-2011-01-328484.
    1. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O’Brien S, Chiorazzi N, Burger JA. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119:1182–1189. doi: 10.1182/blood-2011-10-386417.
    1. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, Kolibaba KS, Furman RR, Rodriguez S, Chang BY, Sukbuntherng J, Izumi R, Hamdy A, Hedrick E, Fowler NH. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88–94. doi: 10.1200/JCO.2012.42.7906.
    1. Kang SP, Ratain MJ. Inconsistent labeling of food effect for oral agents across therapeutic areas: differences between oncology and non-oncology products. Clin Cancer Res. 2010;16:4446–4451. doi: 10.1158/1078-0432.CCR-10-0663.
    1. Marostica E, Sukbuntherng J, Loury D, de Jong J, de Trixhe XW, Vermeulen A, De Nicolao G, O’Brien S, Byrd JC, Advani R, McGreivy J, Poggesi I. Population pharmacokinetic model of ibrutinib, a Bruton tyrosine kinase inhibitor, in patients with B cell malignancies. Cancer Chemother Pharmacol. 2015;75:111–121. doi: 10.1007/s00280-014-2617-3.

Source: PubMed

3
Suscribir