Impact of remote ischemic preconditioning preceding coronary artery bypass grafting on inducing neuroprotection (RIPCAGE): study protocol for a randomized controlled trial

Hrvoje Gasparovic, Tomislav Kopjar, Milan Rados, Alan Anticevic, Marko Rados, Branko Malojcic, Visnja Ivancan, Tea Fabijanic, Maja Cikes, Davor Milicic, Vladimir Gasparovic, Bojan Biocina, Hrvoje Gasparovic, Tomislav Kopjar, Milan Rados, Alan Anticevic, Marko Rados, Branko Malojcic, Visnja Ivancan, Tea Fabijanic, Maja Cikes, Davor Milicic, Vladimir Gasparovic, Bojan Biocina

Abstract

Background: Neurological complications after cardiac surgery have a profound impact on postoperative survival and quality of life. The increasing importance of strategies designed to improve neurological outcomes mirrors the growing risk burden of the contemporary cardiac surgical population. Remote ischemic preconditioning (RIPC) reduces adverse sequelae of ischemia in vulnerable organs by subjecting tissues with high ischemic tolerance to brief periods of hypoperfusion. This trial will evaluate the neuroprotective effect of RIPC in the cardiac surgical arena, by employing magnetic resonance imaging (MRI) and neurocognitive testing.

Methods: Patients scheduled for elective coronary artery bypass grafting with the use of cardiopulmonary bypass will be screened for the study. Eligible patients will be randomized to undergo either a validated RIPC protocol or a sham procedure. The RIPC will be induced by inflation of a blood pressure cuff to 200 mmHg for 5 minutes, followed by a 5-minute reperfusion period. Three sequences of interchanging cuff inflations and deflations will be employed. Neurocognitive testing and MRI imaging will be performed preoperatively and on postoperative day 7. Paired pre- and postoperative neurocognitive and neuroimaging data will then be compared. The primary composite outcome measure will consist of new ischemic lesions on brain MRI, postprocedural impairment in brain connectivity on resting-state functional MRI (rs-fMRI), and significant new declines in neurocognitive performance. The secondary endpoint measures will be the individual components of the primary endpoint measures, expressed as continuous variables, troponin T release on postoperative day 1 and the incidence of major adverse cardiovascular events at 3 months postoperatively. Major adverse cardiovascular events, including accumulating cardiovascular mortality, stroke, nonfatal myocardial infarction, and rehospitalization for ischemia, will form a composite endpoint measure.

Discussion: This trial will aim to assess whether RIPC in patients subjected to surgical myocardial revascularization employing cardiopulmonary bypass initiates a neuroprotective response. Should the results of this trial indicate that RIPC is effective in reducing the incidence of adverse neurological events in patients undergoing coronary artery bypass grafting, it could impact on the current standard of care.

Trial registration: ClinicalTrials.gov NCT02177981.

Figures

Figure 1
Figure 1
Flowchart depicting the screening, recruitment and randomization algorithm. AMI, acute myocardial infarction; CABG, coronary artery bypass grafting; LVEF, left ventricular ejection fraction; MACCE, major adverse cardiac and cerebrovascular event; MRI, magnetic resonance imaging; NCT, neurocognitive testing, PVD, peripheral vascular disease; TIA, transitory ischemic attack.

References

    1. Gasparovic H, Borojevic M, Malojcic B, Gasparovic K, Biocina B. Single aortic clamping in coronary artery bypass surgery reduces cerebral embolism and improves neurocognitive outcomes. Vasc Med. 2013;18:275–281. doi: 10.1177/1358863X13502699.
    1. Selnes OA, Grega MA, Borowicz LM, Jr, Royall RM, McKhann GM, Baumgartner WA. Cognitive changes with coronary artery disease: a prospective study of coronary artery bypass graft patients and nonsurgical controls. Ann Thorac Surg. 2003;75:1377–1384. doi: 10.1016/S0003-4975(03)00021-3.
    1. Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008;79:377–386. doi: 10.1093/cvr/cvn114.
    1. Dickson EW, Lorbar M, Porcaro WA, Fenton RA, Reinhardt CP, Gysembergh A, Przyklenk K. Rabbit heart can be ‘preconditioned’ via transfer of coronary effluent. Am J Physiol. 1999;277:H2451–H2457.
    1. Konstantinov IE, Li J, Cheung MM, Shimizu M, Stokoe J, Kharbanda RK, Redington AN. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation. 2005;79:1691–1695. doi: 10.1097/01.TP.0000159137.76400.5D.
    1. Pilcher JM, Young P, Weatherall M, Rahman I, Bonser RS, Beasley RW. A systematic review and meta-analysis of the cardioprotective effects of remote ischaemic preconditioning in open cardiac surgery. J R Soc Med. 2012;105:436–445. doi: 10.1258/jrsm.2012.120049.
    1. Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomized controlled trial. Lancet. 2007;370:575–579. doi: 10.1016/S0140-6736(07)61296-3.
    1. Venugopal V, Hausenloy DJ, Ludman A, Di Salvo C, Kolvekar S, Yap J, Lawrence D, Bognolo J, Yellon DM. Remote ischaemic preconditioning reduces myocardial injury in patients undergoing cardiac surgery with cold-blood cardioplegia: a randomized controlled trial. Heart. 2009;95:1567–1571. doi: 10.1136/hrt.2008.155770.
    1. Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N, Pasa S, Price V, Tsagakis K, Neuhäuser M, Peters J, Jakob H, Heusch G. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomized, double-blind, controlled trial. Lancet. 2013;382:597–604. doi: 10.1016/S0140-6736(13)61450-6.
    1. Moskowitz MA, Waeber C. Remote ischemic preconditioning: making the brain more tolerant, safely and inexpensively. Circulation. 2011;123:709–711. doi: 10.1161/CIRCULATIONAHA.110.009688.
    1. Narayanan SV, Dave KR, Perez-Pinzon MA. Ischemic preconditioning and clinical scenarios. Curr Opin Neurol. 2013;26:1–7. doi: 10.1097/WCO.0b013e32835bf200.
    1. Jensen HA, Loukogeorgakis S, Yannopoulos F, Rimpiläinen E, Petzold A, Tuominen H, Lepola P, Macallister RJ, Deanfield JE, Mäkelä T, Alestalo K, Kiviluoma K, Anttila V, Tsang V, Juvonen T. Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation. 2011;123:714–721. doi: 10.1161/CIRCULATIONAHA.110.986497.
    1. Barber PA. Magnetic resonance imaging of ischemia viability thresholds and the neurovascular unit. Sensors (Basel) 2013;13:6981–7003. doi: 10.3390/s130606981.
    1. Sun X, Lindsay J, Monsein LH, Hill PC, Corso PJ. Silent brain injury after cardiac surgery: a review: cognitive dysfunction and magnetic resonance imaging diffusion-weighted imaging findings. J Am Coll Cardiol. 2012;60:791–797. doi: 10.1016/j.jacc.2012.02.079.
    1. Cheng HL, Lin CJ, Soong BW, Wang PN, Chang FC, Wu YT, Chou KH, Lin CP, Tu PC, Lee IH. Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis. Stroke. 2012;43:2567–2573. doi: 10.1161/STROKEAHA.111.645614.
    1. Chhatwal JP, Sperling RA. Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis. 2012;31(Suppl 3):S155–S167.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Trials. 2010;11:32. doi: 10.1186/1745-6215-11-32.
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Bocti C, Legault V, Leblanc N, Berger L, Nasreddine Z, Beaulieu-Boire I, Yaneva K, Boulanger JM. Vascular cognitive impairment: most useful subtests of the montreal cognitive assessment in minor stroke and transient ischemic attack. Dement Geriatr Cogn Disord. 2013;36:154–162. doi: 10.1159/000351674.
    1. Dagenais E, Rouleau I, Demers M, Jobin C, Roger E, Chamelian L, Duquette P. Value of the MoCA test as a screening instrument in multiple sclerosis. Can J Neurol Sci. 2013;40:410–415.
    1. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, Melzer TR, Kirwan J, Keenan R, Wells S, Porter RJ, Watts R, Anderson TJ. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75:1717. doi: 10.1212/WNL.0b013e3181fc29c9.
    1. Martinic-Popovic I, Seric V, Demarin V. Early detection of mild cognitive impairment in patients with cerebrovascular disease. Acta Clin Croat. 2006;45:77–85.
    1. Zakzanis KK, Mraz R, Graham SJ. An fMRI study of the Trail Making Test. Neuropsychologia. 2005;43:1878–1886. doi: 10.1016/j.neuropsychologia.2005.03.013.
    1. Moll J, de Oliveira-Souza R, Moll FT, Bramati IE, Andreiuolo PA. The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arq Neuropsiquiatr. 2002;60:900–905. doi: 10.1590/S0004-282X2002000600002.
    1. Anticevic A, Brumbaugh MS, Winkler AM, Lombardo LE, Barrett J, Corlett PR, Kober H, Gruber J, Repovs G, Cole MW, Krystal JH, Pearlson GD, Glahn DC. Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biol Psychiatry. 2013;73:565–573. doi: 10.1016/j.biopsych.2012.07.031.
    1. Cole MW, Anticevic A, Repovs G, Barch D. Variable global dysconnectivity and individual differences in schizophrenia. Biol Psychiatry. 2011;70:43–50. doi: 10.1016/j.biopsych.2011.02.010.
    1. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.
    1. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. Neuroimage. 2013;76:439–441. doi: 10.1016/j.neuroimage.2012.03.017.
    1. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A. 2010;107:4734–4739. doi: 10.1073/pnas.0911855107.
    1. Repovs G, Csernansky JG, Barch DM. Brain network connectivity in individuals with schizophrenia and their siblings. Biol Psychiatry. 2011;69:967–973. doi: 10.1016/j.biopsych.2010.11.009.
    1. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasché P, Ravkilde J, Ohman EM, Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020–2035. doi: 10.1161/CIR.0b013e31826e1058.
    1. Sacco RL, Adams R, Albers G, Alberts MJ, Benavente O, Furie K, Goldstein LB, Gorelick P, Halperin J, Harbaugh R, Johnston SC, Katzan I, Kelly-Hayes M, Kenton EJ, Marks M, Schwamm LH, Tomsick T, American Heart Association; American Stroke Association Council on Stroke; Council on Cardiovascular Radiology and Intervention; American Academy of Neurology Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. Stroke. 2006;37:577–617. doi: 10.1161/01.STR.0000199147.30016.74.

Source: PubMed

3
Suscribir