Tumour-free distance: a novel prognostic marker in patients with early-stage cervical cancer treated by primary surgery

David Cibula, Jiri Slama, Lukáš Dostálek, Daniela Fischerová, Anna Germanova, Filip Frühauf, Pavel Dundr, Kristyna Nemejcova, Jiri Jarkovsky, Silvie Sebestova, Andrea Burgetová, Martina Borčinová, Roman Kocián, David Cibula, Jiri Slama, Lukáš Dostálek, Daniela Fischerová, Anna Germanova, Filip Frühauf, Pavel Dundr, Kristyna Nemejcova, Jiri Jarkovsky, Silvie Sebestova, Andrea Burgetová, Martina Borčinová, Roman Kocián

Abstract

Background: Models predicting recurrence risk (RR) of cervical cancer are used to tailor adjuvant treatment after radical surgery. The goal of our study was to compare available prognostic factors and to develop a prognostic model that would be easy to standardise and use in routine clinical practice.

Methods: All consecutive patients with early-stage cervical cancer treated by primary surgery in a single referral centre (01/2007-12/2016) were eligible if assessed by standardised protocols for pre-operative imaging and pathology. Fifteen prognostic markers were evaluated in 379 patients, out of which 320 lymph node (LN)-negative.

Results: The best predictive model for the whole cohort entailed a combination of tumour-free distance (TFD) ≤ 3.5 mm and LN positivity, which separated two subgroups with a substantially distinct RR 36% and 6.5%, respectively. In LN-negative patients, a combination of TFD ≤ 3.5 mm and adenosquamous tumour type separated a group of nine patients with RR 33% from the rest of the group with 6% RR.

Conclusions: A newly identified prognostic marker, TFD, surpassed all traditional tumour-related markers in the RR assessment. Predictive models combining TFD, which can be easily accessed on pre-operative imaging, with LN status or tumour type can be used in daily practice and can help to identify patients with the highest RR.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Study flow chart.
Fig. 2. Tumour-free distance (TFD) assessment.
Fig. 2. Tumour-free distance (TFD) assessment.
a Scheme of TFD measurement as the minimal lateral distance of uninvolved stroma between the tumour and pericervical ring; b TFD measurement by ultrasound in a transversal plane; c TFD measurement on pathological specimen.
Fig. 3. Accuracy of prognostic models for…
Fig. 3. Accuracy of prognostic models for recurrence risk in the whole cohort (ROC analysis).
Model 1: Minimal tumour-free distance (TFD), number of positive lymph nodes (LN); Model 2: TFD binarised, LN positivity binarised; Model 3: TFD binarised, LN positivity binarised, lymphovascular space invasion; Model 4: TFD binarised, LN positivity binarised, depth of stromal invasion; Model 5: TFD binarised, LN positivity binarised, tumour type; Model 6: largest tumour size binarised, LN positivity binarised.
Fig. 4. Kaplan–Meier recurrence-free survival (RFS) curve…
Fig. 4. Kaplan–Meier recurrence-free survival (RFS) curve for Model 2 in the whole cohort.
Group description: Group 1: tumour-free distance (TFD) > 3.5**, N0**; Group 2: TFD ≤ 3.5**, N0**; Group 3: TFD ≤ 3.5**, N1**. Two patients without event are not included in the groups: minimal tu-pcf (US) > 3.5**; a number of positive LN > 0**. *Log-rank test. **Cut-off determined by ROC analysis, the criterion was the highest value of the sum of sensitivity and specificity.
Fig. 5. Accuracy of prognostic models for…
Fig. 5. Accuracy of prognostic models for disease recurrence in lymph node (LN)-negative patients (ROC analysis).
Model 1: minimal tumour-free distance (TFD), tumour type; Model 2: TFD binarised, tumour type; Model 3: TFD binarised; tumour type, lymphovascular space invasion; Model 4: TFD binarised, tumour type, depth of stromal invasion; Model 5: largest tumour size binarised, tumour type; Model 6: GOG score.
Fig. 6. Kaplan–Meier recurrence-free survival (RFS) curve…
Fig. 6. Kaplan–Meier recurrence-free survival (RFS) curve for Model 2 in lymph node-negative patients.
Group description (number of patients related to this characteristic is in the bracket): Group 1: other combinations not included in Group 2; Group 2: tumour-free distance ≤3.5**, adenosquamous tumour type. One patient without event is not included into the groups: Minimal tu-pcf (US) > 3.5**, adenosquamous tumour type. *Log-rank test. **Cut-off determined by ROC analysis, the criterion was the highest value of the sum of sensitivity and specificity.

References

    1. Cibula D, Potter R, Planchamp F, Avall-Lundqvist E, Fischerova D, Haie Meder C, et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology guidelines for the management of patients with cervical cancer. Radiother. Oncol. 2018;127:404–416. doi: 10.1016/j.radonc.2018.03.003.
    1. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Cervical cancer, version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc Netw. 2019;17:64–84. doi: 10.6004/jnccn.2019.0001.
    1. Delgado G, Bundy B, Zaino R, Sevin B-U, Creasman WT, Major F. Prospective surgical-pathological study of disease-free interval in patients with stage IB squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol. Oncol. 1990;38:352–357. doi: 10.1016/0090-8258(90)90072-S.
    1. Alvarez RD, Soong SJ, Kinney WK, Reid GC, Schray MF, Podratz KC, et al. Identification of prognostic factors and risk groups in patients found to have nodal metastasis at the time of radical hysterectomy for early-stage squamous carcinoma of the cervix. Gynecol. Oncol. 1989;35:130–135. doi: 10.1016/0090-8258(89)90029-2.
    1. Ho CM, Chien TY, Huang SH, Wu CJ, Shih BY, Chang SC. Multivariate analysis of the prognostic factors and outcomes in early cervical cancer patients undergoing radical hysterectomy. Gynecol. Oncol. 2014;93:458–464. doi: 10.1016/j.ygyno.2004.01.026.
    1. Kamura T, Tsukamoto N, Tsuruchi N, Saito T, Matsuyama T, Akazawa K, et al. Multivariate analysis of the histopathologic prognostic factors of cervical cancer in patients undergoing radical hysterectomy. Cancer. 1992;69:181–186. doi: 10.1002/1097-0142(19920101)69:1<181::AID-CNCR2820690130>;2-B.
    1. Lai CH, Chang CJ, Huang HJ, Hsueh S, Chao A, Yang JE, et al. Role of human papillomavirus genotype in prognosis of early-stage cervical cancer undergoing primary surgery. J. Clin. Oncol. 2007;25:3628–3634. doi: 10.1200/JCO.2007.11.2995.
    1. Sevin BU, Lu Y, Bloch DA, Nadji M, Koechli OR, Averette HE. Surgically defined prognostic parameters in patients with early cervical carcinoma. A multivariate survival tree analysis. Cancer. 1996;78:1438–1446. doi: 10.1002/(SICI)1097-0142(19961001)78:7<1438::AID-CNCR10>;2-0.
    1. Yuan CC, Wang PH, Lai CR, Yen MS, Chen CY, Juang CM. Prognosis-predicting system based on factors related to survival of cervical carcinoma. Int. J. Gynaecol. Obstet. 1998;63:163–167. doi: 10.1016/S0020-7292(98)00142-8.
    1. Kristensen GB, Abeler VM, Risberg B, Trop C, Bryne M. Tumor size, depth of invasion, and grading of the invasive tumor front are the main prognostic factors in early squamous cell cervical carcinoma. Gynecol. Oncol. 1999;74:245–251. doi: 10.1006/gyno.1999.5420.
    1. Grisaru DA, Covens A, Franssen E, Chapman W, Shaw P, Colgan T, et al. Histopathologic score predicts recurrence free survival after radical surgery in patients with stage IA2-IB1-2 cervical carcinoma. Cancer. 2003;97:1904–1908. doi: 10.1002/cncr.11269.
    1. Sedlis A, Bundy BN, Rotman MZ, Lentz SS, Muderspach LI, Zaino RJ. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Oncology Group Study. Gynecol. Oncol. 1999;73:177–183. doi: 10.1006/gyno.1999.5387.
    1. Van de Putte G, Lie AK, Vach W, Baekelandt M, Kristensen GB. Risk grouping in stage IB squamous cell cervical carcinoma. Gynecol. Oncol. 2005;99:106–112. doi: 10.1016/j.ygyno.2005.05.026.
    1. Sartori E, Tisi G, Chiudinelli F, La Face B, Franzini R, Pecorelli S. Early stage cervical cancer: adjuvant treatment in negative lymph node cases. Gynecol. Oncol. 2007;107:170–174. doi: 10.1016/j.ygyno.2007.07.026.
    1. Chen Y, Zhang L, Tian J, Fu X, Ren X, Hao Q. Significance of the absolute number and ratio of metastatic lymph nodes in predicting postoperative survival for the International Federation of Gynecology and Obstetrics stage IA2 to IIA cervical cancer. Int. J. Gynecol. Cancer. 2003;23:157–163. doi: 10.1097/IGC.0b013e3182778bcf.
    1. Lee YJ, Kim DY, Lee SW, Park JY, Suh DS, Kim JH, et al. A postoperative scoring system for distant recurrence in node-positive cervical cancer patients after radical hysterectomy and pelvic lymph node dissection with para-aortic lymph node sampling or dissection. Gynecol. Oncol. 2007;144:536–540. doi: 10.1016/j.ygyno.2017.01.001.
    1. Wang C, Yang C, Wang W, Xia B, Li K, Sun F, et al. A prognostic nomogram for cervical cancer after surgery from SEER database. J. Cancer. 2018;9:3923–3928. doi: 10.7150/jca.26220.
    1. Derks M, van der Velden J, de Kroon CD, Nijman HW, van Lonkhuijzen L, van der Zee AGJ, et al. Surgical treatment of early-stage cervical cancer: a multi-institution experience in 2124 cases in The Netherlands over a 30-year period. Int. J. Gynecol. Cancer. 2018;28:757–763. doi: 10.1097/IGC.0000000000001228.
    1. Biewenga P, van der Velden J, Mol BW, Stalpers LJ, Schilthuis MS, van der Steeg JW, et al. Validation of existing prognostic models in patients with early-stage cervical cancer. Gynecol. Oncol. 2009;115:277–284. doi: 10.1016/j.ygyno.2009.08.006.
    1. Cibula D, Abu-Rustum NR. Pelvic lymphadenectomy in cervical cancer-surgical anatomy and proposal for a new classification system. Gynecol. Oncol. 2010;116:33–37. doi: 10.1016/j.ygyno.2009.09.003.
    1. Querleu D, Cibula D, Abu-Rustum NR. 2017 update on the Querleu-Morrow classification of radical hysterectomy. Ann. Surg. Oncol. 2017;24:3406–3412. doi: 10.1245/s10434-017-6031-z.
    1. Testa AC, Ludovisi M, Manfredi R, Zannoni G, Gui B, Basso D, et al. Transvaginal ultrasonography and magnetic resonance imaging for assessment of presence, size and extent of invasive cervical cancer. Ultrasound Obstet. Gynecol. 2009;34:335–344. doi: 10.1002/uog.7325.
    1. Fischerova D, Cibula D, Stenhova H, Vondrichova H, Calda P, Zikan M, et al. Transrectal ultrasound and magnetic resonance imaging in staging of early cervical cancer. Int. J. Gynecol. Cancer. 2008;18:766–772. doi: 10.1111/j.1525-1438.2007.01072.x.
    1. Epstein E, Testa A, Gaurilcikas A, Di Legge A, Ameye L, Atstupenaite V, et al. Early-stage cervical cancer: tumor delineation by magnetic resonance imaging and ultrasound—a European multicenter trial. Gynecol. Oncol. 2013;128:449–453. doi: 10.1016/j.ygyno.2012.09.025.
    1. Chiappa V, Di Legge A, Valentini AL, Gui B, Micco M, Ludovisi M, et al. Agreement of two-dimensional and three-dimensional transvaginal ultrasound with magnetic resonance imaging in assessment of parametrial infiltration in cervical cancer. Ultrasound Obstet. Gynecol. 2015;45:459–469. doi: 10.1002/uog.14637.
    1. Education and Practical Standards Committee, European Federation of Societies for Ultrasound in Medicine and Biology. Minimum training recommendations for the practice of medical ultrasound. Ultraschall Med.27, 79–105 (2006).
    1. Fischerova D. Ultrasound scanning of the pelvis and abdomen for staging of gynecological tumors: a review. Ultrasound Obstet. Gynecol. 2011;38:246–266. doi: 10.1002/uog.10054.
    1. Cibula D, McCluggage WG. Sentinel lymph node (SLN) concept in cervical cancer: Current limitations and unanswered questions. Gynecol. Oncol. 2019;152:202–207. doi: 10.1016/j.ygyno.2018.10.007.
    1. Tsukamoto T. The studies on the spreading modus of the uterine cervical cancer: especially a new proposal of the postoperative histological classification. Shinshu Med J. 1966;15:354–383.
    1. Noguchi H, Shiozawa K, Tsukamoto T, Tsukahara Y, Iwai S, Fukuta T. The postoperative classification for uterine cervical cancer and its clinical evaluation. Gynecol. Oncol. 1983;16:219–231. doi: 10.1016/0090-8258(83)90096-3.
    1. Kishi Y, Hashimoto Y, Sakamoto Y, Inui S. Thickness of uninvolved fibromuscular stroma and extrauterine spread of carcinoma of the uterine cervix. Cancer. 1987;60:2331–2336. doi: 10.1002/1097-0142(19871101)60:9<2331::AID-CNCR2820600936>;2-O.
    1. Landoni F, Bocciolone L, Perego P, Maneo A, Bratina G, Mangioni C. Cancer of the cervix, FIGO stages IB and IIA: patterns of local growth and paracervical extension. Int. J. Gynecol. Cancer. 1995;5:329–334. doi: 10.1046/j.1525-1438.1995.05050329.x.

Source: PubMed

3
Suscribir