Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

Kati Erdmann, Knut Kaulke, Cathleen Thomae, Doreen Huebner, Mildred Sergon, Michael Froehner, Manfred P Wirth, Susanne Fuessel, Kati Erdmann, Knut Kaulke, Cathleen Thomae, Doreen Huebner, Mildred Sergon, Michael Froehner, Manfred P Wirth, Susanne Fuessel

Abstract

Background: Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA).

Methods: In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation.

Results: The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a.

Conclusions: The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction.

Figures

Figure 1
Figure 1
Relative transcript levels of miR-186 in PCa samples with regard to clinicopathological parameters. (A) Comparison of the miR-186 expression levels in organ-confined (pT2, n = 23) versus nonorgan-confined tumors (pT3 + 4, n = 27). (B) Comparison of the miR-186 expression levels in patient samples without any initial metastases (N0M0, n = 40) versus those with initial metastases (N+/M+, n = 10). Transcript levels of miR-186 were normalized to RNU48. P values were calculated by the Mann–Whitney U test with a two-sided 95% confidence interval. Outliers are indicated by circles; extreme values are indicated by asterisks.
Figure 2
Figure 2
Matched miRNA and target gene expression with regard to the prostate tissue specimens. Depicted are exemplary scatter plots with trend lines for (A) miR-186/AMACR, (B) miR-186/PSMA, (C) miR-26a/TRPM8 and (D) miR-26a/EZH2. Transcript levels of miRNAs and target genes were normalized to RNU48 and TBP, respectively.
Figure 3
Figure 3
Effect of miR-26a mimic and siRNAs on target gene mRNA expression in PCa cell lines. Transcript levels of (A) AMACR and (B) EZH2 were determined by qPCR and normalized to TBP. Normalized values are shown relative to the corresponding control treatments (100%): miR-CON (100 nM) for treatment with miR-26a mimic and siR-CON (150 nM) for treatment with siRNAs, respectively. Values represent averages of two to five independent experiments with their mean deviation. A one-tailed paired t-test was used to compare differences between cells treated with miR-26a mimic or siRNAs and the respective control treated cells (miR-CON or siR-CON): *p < 0.05, **p < 0.01.
Figure 4
Figure 4
Effect of miR-26a mimic and siRNAs on target gene protein expression in PCa cell lines. Protein levels of (A) AMACR and (B) EZH2 were determined by Western Blot and normalized to α-tubulin. Normalized values are shown relative to the corresponding control treatments (100%): miR-CON (100 nM) for treatment with miR-26a mimic and siR-CON (150 nM) for treatment with siRNAs, respectively. Values represent averages of two to five independent experiments with their mean deviation. A one-tailed paired t-test was used to compare differences between cells treated with miR-26a mimic or siRNAs and the respective control treated cells (miR-CON or siR-CON): *p < 0.05, **p < 0.01, #p < 0.1 (statistical trend). (C) Exemplary Western Blots for the detection of AMACR protein following treatment with 100 nM miR-26a mimic or miR-CON are depicted. Alpha-tubulin served as loading control. Lines indicate that the sample lanes were not adjacent in the original gel. However, samples per cell line were retrieved from the same experiment and each sample was simultaneously probed for AMACR and α-tubulin.
Figure 5
Figure 5
miR-26a directly targets AMACR. (A) The mature miR-26a sequence aligned with the predicted binding site within the 3′UTR of AMACR is depicted. (B) Luciferase activity was measured in DU-145 cells co-transfected with 100 nM miR-26a mimic and 1.5 μg of the wildtype (pmir-GLO-A26a) or mutated (pmir-GLO-Amut26a) luciferase reporter vector for AMACR. Normalized values are shown relative to the control treatment with 100 nM miR-CON and the wildtype luciferase reporter vector (100%). Values represent averages of six independent experiments with their mean deviation. A one-tailed paired t-test was used to compare differences between the respective treatments and the control treated cells (pmir-GLO-A26a + miR-CON): *p < 0.05.

References

    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107.
    1. Hori S, Blanchet JS, McLoughlin J. From prostate-specific antigen (PSA) to precursor PSA (proPSA) isoforms: a review of the emerging role of proPSAs in the detection and management of early prostate cancer. BJU Int. 2013;112(6):717–728. doi: 10.1111/j.1464-410X.2012.11329.x.
    1. Schmidt U, Fuessel S, Koch R, Baretton GB, Lohse A, Tomasetti S, Unversucht S, Froehner M, Wirth MP, Meye A. Quantitative multi-gene expression profiling of primary prostate cancer. Prostate. 2006;66(14):1521–1534. doi: 10.1002/pros.20490.
    1. Schneider S, Voigt S, Fussel S, Lohse-Fischer A, Tomasetti S, Haase M, Koch R, Baretton GB, Grimm MO, Wirth MP. Molecular genetic markers for prostate cancer. Evidence in fine needle biopsies for improved confirmation of the diagnosis. Urologe A. 2008;47(9):1208–1211. doi: 10.1007/s00120-008-1837-8.
    1. Fuessel S, Sickert D, Meye A, Klenk U, Schmidt U, Schmitz M, Rost AK, Weigle B, Kiessling A, Wirth MP. Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int J Oncol. 2003;23(1):221–228.
    1. Kiessling A, Fussel S, Schmitz M, Stevanovic S, Meye A, Weigle B, Klenk U, Wirth MP, Rieber EP. Identification of an HLA-A*0201-restricted T-cell epitope derived from the prostate cancer-associated protein trp-p8. Prostate. 2003;56(4):270–279. doi: 10.1002/pros.10265.
    1. Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, Pihan G, Cai F, Babcook JS, Rathanaswami P, Reed SG, Xu J, Fanger GR. P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol. 2001;25(11):1397–1404. doi: 10.1097/00000478-200111000-00007.
    1. Lloyd MD, Darley DJ, Wierzbicki AS, Threadgill MD. Alpha-methylacyl-CoA racemase–an ‘obscure’ metabolic enzyme takes centre stage. Febs J. 2008;275(6):1089–1102. doi: 10.1111/j.1742-4658.2008.06290.x.
    1. Zha S, Ferdinandusse S, Denis S, Wanders RJ, Ewing CM, Luo J, de Marzo AM, Isaacs WB. Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res. 2003;63(21):7365–7376.
    1. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1–2):21–29.
    1. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–629. doi: 10.1038/nature01075.
    1. Cunha AC, Weigle B, Kiessling A, Bachmann M, Rieber EP. Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett. 2006;236(2):229–238. doi: 10.1016/j.canlet.2005.05.021.
    1. Weng J, Wang J, Cai Y, Stafford LJ, Mitchell D, Ittmann M, Liu M. Increased expression of prostate-specific G-protein-coupled receptor in human prostate intraepithelial neoplasia and prostate cancers. Int J Cancer. 2005;113(5):811–818. doi: 10.1002/ijc.20635.
    1. Xu LL, Sun C, Petrovics G, Makarem M, Furusato B, Zhang W, Sesterhenn IA, McLeod DG, Sun L, Moul JW, Srivastava S. Quantitative expression profile of PSGR in prostate cancer. Prostate Cancer Prostatic Dis. 2006;9(1):56–61. doi: 10.1038/sj.pcan.4500836.
    1. Rigau M, Morote J, Mir MC, Ballesteros C, Ortega I, Sanchez A, Colas E, Garcia M, Ruiz A, Abal M, Planas J, Reventos J, Doll A. PSGR and PCA3 as biomarkers for the detection of prostate cancer in urine. Prostate. 2010;70(16):1760–1767.
    1. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82(11):2256–2261. doi: 10.1002/(SICI)1097-0142(19980601)82:11<2256::AID-CNCR22>;2-S.
    1. Perner S, Hofer MD, Kim R, Shah RB, Li H, Moller P, Hautmann RE, Gschwend JE, Kuefer R, Rubin MA. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol. 2007;38(5):696–701. doi: 10.1016/j.humpath.2006.11.012.
    1. Akhtar NH, Pail O, Saran A, Tyrell L, Tagawa ST. Prostate-specific membrane antigen-based therapeutics. Adv Urol. 2012;2012:973820.
    1. Osborne JR, Akhtar NH, Vallabhajosula S, Anand A, Deh K, Tagawa ST. Prostate-specific membrane antigen-based imaging. Urol Oncol. 2013;31(2):144–154. doi: 10.1016/j.urolonc.2012.04.016.
    1. Henshall SM, Afar DE, Hiller J, Horvath LG, Quinn DI, Rasiah KK, Gish K, Willhite D, Kench JG, Gardiner-Garden M, Stricker PD, Scher HI, Grygiel JJ, Agus DB, Mack DH, Sutherland RL. Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res. 2003;63(14):4196–4203.
    1. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001;61(9):3760–3769.
    1. Zhang L, Barritt GJ. Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res. 2004;64(22):8365–8373. doi: 10.1158/0008-5472.CAN-04-2146.
    1. Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer Res. 2005;65(9):3509–3512. doi: 10.1158/0008-5472.CAN-05-0298.
    1. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–269. doi: 10.1038/nrc1840.
    1. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–2261. doi: 10.1073/pnas.0510565103.
    1. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–838. doi: 10.1038/nature03702.
    1. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–866. doi: 10.1038/nrc1997.
    1. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, Yfantis HG, Stephens RM, Croce CM. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2008;68(15):6162–6170. doi: 10.1158/0008-5472.CAN-08-0144.
    1. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, Bangma CH, Litman T, Visakorpi T, Jenster G. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31(8):978–991. doi: 10.1038/onc.2011.304.
    1. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67(13):6130–6135. doi: 10.1158/0008-5472.CAN-07-0533.
    1. Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stohr R, Hartmann A, Wullich B, Grasser F. The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res. 2010;8(4):529–538. doi: 10.1158/1541-7786.MCR-09-0443.
    1. Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T, Dyrskjot L, Eltze E, Wieland W, Keck B, Ekici AB, Grasser F, Wullich B. MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer. 2012;130(3):611–621. doi: 10.1002/ijc.26064.
    1. Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNA profiling of prostate cancer. J Cancer Educ. 2013;4(5):350–357. doi: 10.7150/jca.6394.
    1. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–677. doi: 10.1038/ng2003.
    1. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25(46):6188–6196. doi: 10.1038/sj.onc.1209913.
    1. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 2010;9:108. doi: 10.1186/1476-4598-9-108.
    1. Kisliouk T, Yosefi S, Meiri N. MiR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine 27, and affects thermotolerance acquisition. Eur J Neurosci. 2011;33(2):224–235. doi: 10.1111/j.1460-9568.2010.07493.x.
    1. Koh CM, Iwata T, Zheng Q, Bethel C, Yegnasubramanian S, de Marzo AM. Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget. 2011;2(9):669–683.
    1. Liu X, Wang C, Chen Z, Jin Y, Wang Y, Kolokythas A, Dai Y, Zhou X. MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J. 2011;440(1):23–31. doi: 10.1042/BJ20111006.
    1. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–1699. doi: 10.1126/science.1165395.
    1. Carlsson J, Helenius G, Karlsson M, Lubovac Z, Andren O, Olsson B, Klinga-Levan K. Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genet Cytogenet. 2010;202(2):71–75. doi: 10.1016/j.cancergencyto.2010.06.009.
    1. Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol. 2008;9:76. doi: 10.1186/1471-2199-9-76.
    1. Mavridis K, Stravodimos K, Scorilas A. Downregulation and prognostic performance of MicroRNA 224 expression in prostate cancer. Clin Chem. 2013;59(1):261–269. doi: 10.1373/clinchem.2012.191502.
    1. Kunze D, Kraemer K, Erdmann K, Froehner M, Wirth MP, Fuessel S. Simultaneous siRNA-mediated knockdown of antiapoptotic BCL2, Bcl-xL, XIAP and survivin in bladder cancer cells. Int J Oncol. 2012;41:1271–1277.
    1. Yao V, Parwani A, Maier C, Heston WD, Bacich DJ. Moderate expression of prostate-specific membrane antigen, a tissue differentiation antigen and folate hydrolase, facilitates prostate carcinogenesis. Cancer Res. 2008;68(21):9070–9077. doi: 10.1158/0008-5472.CAN-08-2328.
    1. Schaefer A, Jung M, Kristiansen G, Lein M, Schrader M, Miller K, Stephan C, Jung K. MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol. 2010;28(1):4–13. doi: 10.1016/j.urolonc.2008.10.021.
    1. Schaefer A, Stephan C, Busch J, Yousef GM, Jung K. Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol. 2010;7(5):286–297. doi: 10.1038/nrurol.2010.45.

Source: PubMed

3
Suscribir