Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: a randomized controlled trial

Lalantha Leelarathna, Shane W English, Hood Thabit, Karen Caldwell, Janet M Allen, Kavita Kumareswaran, Malgorzata E Wilinska, Marianna Nodale, Jasdip Mangat, Mark L Evans, Rowan Burnstein, Roman Hovorka, Lalantha Leelarathna, Shane W English, Hood Thabit, Karen Caldwell, Janet M Allen, Kavita Kumareswaran, Malgorzata E Wilinska, Marianna Nodale, Jasdip Mangat, Mark L Evans, Rowan Burnstein, Roman Hovorka

Abstract

Introduction: Closed-loop (CL) systems modulate insulin delivery according to glucose levels without nurse input. In a prospective randomized controlled trial, we evaluated the feasibility of an automated closed-loop approach based on subcutaneous glucose measurements in comparison with a local sliding-scale insulin-therapy protocol.

Methods: Twenty-four critically ill adults (predominantly trauma and neuroscience patients) with hyperglycemia (glucose, ≥10 mM) or already receiving insulin therapy, were randomized to receive either fully automated closed-loop therapy (model predictive control algorithm directing insulin and 20% dextrose infusion based on FreeStyle Navigator continuous subcutaneous glucose values, n = 12) or a local protocol (n = 12) with intravenous sliding-scale insulin, over a 48-hour period. The primary end point was percentage of time when arterial blood glucose was between 6.0 and 8.0 mM.

Results: The time when glucose was in the target range was significantly increased during closed-loop therapy (54.3% (44.1 to 72.8) versus 18.5% (0.1 to 39.9), P = 0.001; median (interquartile range)), and so was time in wider targets, 5.6 to 10.0 mM and 4.0 to 10.0 mM (P ≤ 0.002), reflecting a reduced glucose exposure >8 and >10 mM (P ≤ 0.002). Mean glucose was significantly lower during CL (7.8 (7.4 to 8.2) versus 9.1 (8.3 to 13.0] mM; P = 0.001) without hypoglycemia (<4 mM) during either therapy.

Conclusions: Fully automated closed-loop control based on subcutaneous glucose measurements is feasible and may provide efficacious and hypoglycemia-free glucose control in critically ill adults.

Trial registration: ClinicalTrials.gov Identifier, NCT01440842.

Figures

Figure 1
Figure 1
Components of the closed-loop glucose-control system.
Figure 2
Figure 2
User interface of the closed-loop system.
Figure 3
Figure 3
Cumulative distribution of reference glucose values obtained during closed-loop and local treatment protocol. Dashed vertical lines indicate the primary study target range from 6.0 to 8.0 mM. Vertical fine dashed lines indicate the wider target from 4.0 to 10.0 mM.
Figure 4
Figure 4
An example of the 48-hour closed-loop study. Darker red continuous line represents sensor glucose. Lighter red squares represent reference glucose measurements used for sensor calibration. Blue line represents insulin infusion. Thin red dashed lines indicate primary target. Dextrose infusion was not required in this study.
Figure 5
Figure 5
Mean reference glucose per subject during closed-loop (n = 12) and local treatment protocol (n = 12). Horizontal black line indicates the mean reference glucose in each intervention arm.
Figure 6
Figure 6
Glucose and insulin values during infusion. Top panel: Glucose profiles (median and interquartile range) during closed-loop and local treatment protocol. Bottom panel: Median insulin infusion rates during closed-loop and local treatment protocol. The dashed lines indicate the primary target range from 6 to 8 mM.

References

    1. Kavanagh BP, McCowen KC. Clinical practice: glycemic control in the ICU. N Engl J Med. 2010;17(26):2540–2546. doi: 10.1056/NEJMcp1001115.
    1. Krinsley JS. Understanding glycemic control in the critically ill: three domains are better than one. Intensive Care Med. 2011;17(3):382–384. doi: 10.1007/s00134-010-2110-3.
    1. Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;17(12):1471–1478. doi: 10.4065/78.12.1471.
    1. Bochicchio GV, Joshi M, Bochicchio KM, Pyle A, Johnson SB, Meyer W, Lumpkins K, Scalea TM. Early hyperglycemic control is important in critically injured trauma patients. J Trauma. 2007;17(6):1353–1358. doi: 10.1097/TA.0b013e31815b83c4. discussion, 1358-1359.
    1. Bagshaw SM, Egi M, George C, Bellomo R. Australia New Zealand Intensive Care Society Database Management C. Early blood glucose control and mortality in critically ill patients in Australia. Crit Care Med. 2009;17(2):463–470. doi: 10.1097/CCM.0b013e318194b097.
    1. NICE-SUGAR Study Investigators. Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, Mitchell I, Foster D, Dhingra V, Henderson WR, Ronco JJ, Bellomo R, Cook D, McDonald E, Dodek P, Hebert PC, Heyland DK, Robinson BG. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;17(12):1108–1118.
    1. Hermanides J, Bosman RJ, Vriesendorp TM, Dotsch R, Rosendaal FR, Zandstra DF, Hoekstra JB, DeVries JH. Hypoglycemia is associated with intensive care unit mortality. Crit Care Med. 2010;17(6):1430–1434. doi: 10.1097/CCM.0b013e3181de562c.
    1. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;17(2):244–252. doi: 10.1097/00000542-200608000-00006.
    1. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;17(11):3008–3013. doi: 10.1097/CCM.0b013e31818b38d2.
    1. Badawi O, Waite MD, Fuhrman SA, Zuckerman IH. Association between intensive care unit-acquired dysglycemia and in-hospital mortality. Crit Care Med. 2012;17(12):3180–3188. doi: 10.1097/CCM.0b013e3182656ae5.
    1. Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia. Lancet. 2009;17(9677):1798–1807. doi: 10.1016/S0140-6736(09)60553-5.
    1. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;17(19):1359–1367. doi: 10.1056/NEJMoa011300.
    1. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;17(5):449–461. doi: 10.1056/NEJMoa052521.
    1. NICE-SUGAR Study Investigators. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;17(13):1283–1297.
    1. Preiser JC, Devos P, Ruiz-Santana S, Melot C, Annane D, Groeneveld J, Iapichino G, Leverve X, Nitenberg G, Singer P, Wernerman J, Joannidis M, Stecher A, Chiolero R. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: The Glucontrol Study. Intensive Care Med. 2009;17(10):1738–1748. doi: 10.1007/s00134-009-1585-2.
    1. Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, Dhaliwal R, Henderson WR, Chittock DR, Finfer S, Talmor D. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;17(8):821–827. doi: 10.1503/cmaj.090206.
    1. Van den Berghe G. Intensive insulin therapy in the ICU: reconciling the evidence. Nature Rev Endocrinol. 2012;17(6):374–378.
    1. Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, Mesotten D. Clinical review: intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab. 2009;17(9):3163–3170. doi: 10.1210/jc.2009-0663.
    1. Van Herpe T, De Moor B, Van den Berghe G. Towards closed-loop glycaemic control. Best Pract Res Clin Anaesthesiol. 2009;17(1):69–80. doi: 10.1016/j.bpa.2008.07.003.
    1. Aragon D. Evaluation of nursing work effort and perceptions about blood glucose testing in tight glycemic control. Am J Crit Care. 2006;17(4):370–377.
    1. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Tamborlane WV, Beck RW, Bode BW, Buckingham B, Chase HP, Clemons R, Fiallo-Scharer R, Fox LA, Gilliam LK, Hirsch IB, Huang ES, Kollman C, Kowalski AJ, Laffel L, Lawrence JM, Lee J, Mauras N, O'Grady M, Ruedy KJ, Tansey M, Tsalikian E, Weinzimer S, Wilson DM, Wolpert H, Wysocki T, Xing D. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;17(14):1464–1476.
    1. Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ. 2011;17:d3805. doi: 10.1136/bmj.d3805.
    1. Corstjens AM, Ligtenberg JJ, van der Horst IC, Spanjersberg R, Lind JS, Tulleken JE, Meertens JH, Zijlstra JG. Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients. Crit Care. 2006;17(5):R135. doi: 10.1186/cc5048.
    1. Siegelaar SE, Barwari T, Hermanides J, Stooker W, van der Voort PH, DeVries JH. Accuracy and reliability of continuous glucose monitoring in the intensive care unit: a head-to-head comparison of two subcutaneous glucose sensors in cardiac surgery patients. Diabetes Care. 2011;17(3):e31. doi: 10.2337/dc10-1882.
    1. Holzinger U, Warszawska J, Kitzberger R, Herkner H, Metnitz PG, Madl C. Impact of shock requiring norepinephrine on the accuracy and reliability of subcutaneous continuous glucose monitoring. Intensive Care Med. 2009;17(8):1383–1389. doi: 10.1007/s00134-009-1471-y.
    1. Hovorka R. Closed-loop insulin delivery: from bench to clinical practice. Nature Rev Endocrinol. 2011;17(7):385–395. doi: 10.1038/nrendo.2011.32.
    1. Scott NW, McPherson GC, Ramsay CR, Campbell MK. The method of minimization for allocation to clinical trials. a review. Control Clin Trials. 2002;17(6):662–674. doi: 10.1016/S0197-2456(02)00242-8.
    1. Minim: allocation by minimisation in clinical trials.
    1. Geoffrey M, Brazg R, Richard W. FreeStyle Navigator Continuous Glucose Monitoring System with TRUstart algorithm, a 1-hour warm-up time. J Diabetes Sci Technol. 2011;17(1):99–106.
    1. Bequette B. A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther. 2005;17(1):28–47. doi: 10.1089/dia.2005.7.28.
    1. Wilinska ME, Blaha J, Chassin LJ, Cordingley JJ, Dormand NC, Ellmerer M, Haluzik M, Plank J, Vlasselaers D, Wouters PJ, Hovorka R. Evaluating glycemic control algorithms by computer simulations. Diabetes Technol Ther. 2011;17(7):713–722. doi: 10.1089/dia.2011.0016.
    1. Hovorka R, Shojaee-Moradie F, Carroll PV, Chassin LJ, Gowrie IJ, Jackson NC, Tudor RS, Umpleby AM, Jones RH. Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab. 2002;17(5):E992–1007.
    1. Qaseem A, Humphrey LL, Chou R, Snow V, Shekelle P. Clinical Guidelines Committee of the American College of P. Use of intensive insulin therapy for the management of glycemic control in hospitalized patients: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2011;17(4):260–267. doi: 10.7326/0003-4819-154-4-201102150-00007.
    1. American Diabetes A. Standards of medical care in diabetes: 2012. Diabetes Care. 2012;17(Suppl 1):S11–63.
    1. Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, Freire AX, Geehan D, Kohl B, Nasraway SA, Rigby M, Sands K, Schallom L, Taylor B, Umpierrez G, Mazuski J, Schunemann H. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;17(12):3251–3276. doi: 10.1097/CCM.0b013e3182653269.
    1. Siegelaar SE, Hermanides J, Oudemans-van Straaten HM, van der Voort PH, Bosman RJ, Zandstra DF, DeVries JH. Mean glucose during ICU admission is related to mortality by a U-shaped curve in surgical and medical patients: a retrospective cohort study. Critical Care. 2010;17(6):R224. doi: 10.1186/cc9369.
    1. Balkin M, Mascioli C, Smith V, Alnachawati H, Mehrishi S, Saydain G, Slone H, Alessandrini J, Brown L. Achieving durable glucose control in the intensive care unit without hypoglycaemia: a new practical IV insulin protocol. Diabetes Metab Res Rev. 2007;17(1):49–55. doi: 10.1002/dmrr.673.
    1. Goldberg PA, Siegel MD, Sherwin RS, Halickman JI, Lee M, Bailey VA, Lee SL, Dziura JD, Inzucchi SE. Implementation of a safe and effective insulin infusion protocol in a medical intensive care unit. Diabetes Care. 2004;17(2):461–467. doi: 10.2337/diacare.27.2.461.
    1. Kanji S, Singh A, Tierney M, Meggison H, McIntyre L, Hebert PC. Standardization of intravenous insulin therapy improves the efficiency and safety of blood glucose control in critically ill adults. Intensive Care Med. 2004;17(5):804–810. doi: 10.1007/s00134-004-2252-2.
    1. Chase JG, Shaw G, Le Compte A, Lonergan T, Willacy M, Wong XW, Lin J, Lotz T, Lee D, Hann C. Implementation and evaluation of the SPRINT protocol for tight glycaemic control in critically ill patients: a clinical practice change. Critical Care. 2008;17(2):R49. doi: 10.1186/cc6868.
    1. Davidson PC, Steed RD, Bode BW. Glucommander: a computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation. Diabetes Care. 2005;17(10):2418–2423. doi: 10.2337/diacare.28.10.2418.
    1. Vogelzang M, Zijlstra F, Nijsten MW. Design and implementation of GRIP: a computerized glucose control system at a surgical intensive care unit. BMC Med Informat Decision Making. 2005;17:38. doi: 10.1186/1472-6947-5-38.
    1. Plank J, Blaha J, Cordingley J, Wilinska M, Chassin L, Morgan C, Squire S, Haluzik M, Kremen J, Svacina S, Toller W, Plasnik A, Ellmerer M, Hovorka R. Pieber T Multicentric, randomized, controlled trial to evaluate blood glucose control by the model predictive control algorithm versus routine glucose management protocols in intensive care unit patients. Diabetes Care. 2006;17(2):271–276. doi: 10.2337/diacare.29.02.06.dc05-1689.
    1. Pachler C, Plank J, Weinhandl H, Chassin LJ, Wilinska ME, Kulnik R, Kaufmann P, Smolle KH, Pilger E, Pieber TR, Ellmerer M, Hovorka R. Tight glycaemic control by an automated algorithm with time-variant sampling in medical ICU patients. Intensive Care Med. 2008;17(7):1224–1230. doi: 10.1007/s00134-008-1033-8.
    1. Blaha J, Kopecky P, Matias M, Hovorka R, Kunstyr J, Kotulak T, Lips M, Rubes D, Stritesky M, Lindner J, Semrad M, Haluzik M. Comparison of three protocols for tight glycemic control in cardiac surgery patients. Diabetes Care. 2009;17(5):757–761. doi: 10.2337/dc08-1851.
    1. Cordingley J, Vlasselaers D, Dormand N, Wouters P, Squire S, Chassin L, Wilinska M, Morgan C, Hovorka R, Van den Berghe G. Intensive insulin therapy: enhanced Model Predictive Control algorithm versus standard care. Intensive Care Med. 2009;17(1):123–128. doi: 10.1007/s00134-008-1236-z.
    1. Hovorka R, Kremen J, Blaha J, Matias M, Anderlova K, Bosanska L, Roubicek T, Wilinska ME, Chassin LJ, Svacina S, Haluzik M. Blood glucose control by a model predictive control algorithm with variable sampling rate versus a routine glucose management protocol in cardiac surgery patients: a randomized controlled trial. J Clin Endocrinol Metab. 2007;17(8):2960–2964. doi: 10.1210/jc.2007-0434.
    1. Van Herpe T, Mesotten D, Wouters PJ, Herbots J, Voets E, Buyens J, De Moor B, Van den Berghe G. LOGIC-insulin algorithm-guided versus nurse-directed blood glucose control during critical illness: the LOGIC-1 single-center, randomized, controlled clinical trial. Diabetes Care. 2013;17(2):188–194. doi: 10.2337/dc12-0584.
    1. Chee F, Fernando T, van Heerden PV. Closed-loop glucose control in critically ill patients using continuous glucose monitoring system (CGMS) in real time. IEEE Trans Inf Technol Biomed. 2003;17(1):43–53. doi: 10.1109/TITB.2003.808509.
    1. Yatabe T, Yamazaki R, Kitagawa H, Okabayashi T, Yamashita K, Hanazaki K, Yokoyama M. The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients. Crit Care Med. 2011;17(3):575–578. doi: 10.1097/CCM.0b013e318206b9ad.
    1. Okabayashi T, Kozuki A, Sumiyoshi T, Shima Y. Technical challenges and clinical outcomes of using a closed-loop glycemic control system in the hospital. J Diabetes Sci Technol. 2013;17(1):238–246.
    1. Garg SK, Voelmle M, Gottlieb PA. Time lag characterization of two continuous glucose monitoring systems. Diabetes Res Clin Pract. 2010;17(3):348–353. doi: 10.1016/j.diabres.2009.11.014.

Source: PubMed

3
Suscribir