Pathogenesis of insulin resistance in skeletal muscle

Muhammad A Abdul-Ghani, Ralph A DeFronzo, Muhammad A Abdul-Ghani, Ralph A DeFronzo

Abstract

Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

Figures

Figure 1
Figure 1
Dose-response curve relating the plasma insulin concentration to the rate of insulin mediated wgole body glucose uptake in controls and type 2 diabetic subjects. *P < .01 (from [21]).
Figure 2
Figure 2
Insulin-stimulated whole body glucose uptake measured with the euglycemic clamp in lean healthy and type 2 diabetic subjects (left) and time course of change in leg glucose uptake in type 2 diabetic and control subjects (right) (from [5]).
Figure 3
Figure 3
Insulin-stimulated glucose disposal (40 mU/m2·min euglycemic insulin clamp) in lean healthy control (CON) subjects, lean drug naïve type 2 diabetic subjects (T2DM), lean normal-glucose-tolerant (NGT) hypertensive subjects (HTN), NGT hypertriglyceridemic subjects, and nondiabetic subjects with coronary artery disease (CAD). The open portion of the bar represents nonoxidative glucose disposal (glycogen synthesis) and the solid portion represents glucose oxidation. See DeFronzo and Ferrannini [80], DeFronzo [81].
Figure 4
Figure 4
Insulin signal transduction system in normal glucose tolerant subjects (see text for a detailed discussion).
Figure 5
Figure 5
In insulin resistant individuals insulin signaling is impaired at the level of IRS-1 leading to decreased glucose transport/phosphorylation/metabolism and impaired nitric oxide synthase activation/endothelial function. Increased intramycellar fat and fatty acid meyabolite content and mitochondrial dysfunction also exist in skeletal muscle in insulin resistant individuals (see text for a detailed discussion).

References

    1. DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Reviews. 1997;5(3):177–269.
    1. DeFronzo RA. The triumvirate: β-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988;37(6):667–687.
    1. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Medical Clinics of North America. 2004;88(4):787–835.
    1. Defronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795.
    1. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. The Journal of Clinical Investigation. 1985;76(1):149–155.
    1. Mitrakou A, Kelley D, Veneman T, et al. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes. 1990;39(11):1381–1390.
    1. Cusi K, Maezono K, Osman A, et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. The Journal of Clinical Investigation. 2000;105(3):311–320.
    1. Bajaj M, DeFronzo RA. Metabolic and molecular basis of insulin resistance. Journal of Nuclear Cardiology. 2003;10(3):311–323.
    1. Bouzakri K, Koistinen HA, Zierath JR. Molecular mechanisms of skeletal muscle insulin resistance in type 2 diabetes. Current Diabetes Reviews. 2005;1(2):167–174.
    1. Karlsson HKR, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochemistry and Biophysics. 2007;48(2-3):103–113.
    1. Lettner A, Roden M. Ectopic fat and insulin resistance. Current Diabetes Reports. 2008;8(3):185–191.
    1. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51(1):7–18.
    1. Petersen KF, Shulman GI. Etiology of insulin resistance. American Journal of Medicine. 2006;119(5, supplement 1):10S–16S.
    1. Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. Journal of Clinical Endocrinology and Metabolism. 2004;89(2):463–478.
    1. Krssak M, Roden M. The role of lipid accumulation in liver and muscle for insulin resistance and type 2 diabetes mellitus in humans. Reviews in Endocrine and Metabolic Disorders. 2004;5(2):127–134.
    1. Roden M. Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. International Journal of Obesity. 2005;29(supplement 2):S111–S115.
    1. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55(supplement 2):S9–S15.
    1. Abdul-Ghani MA, DeFronzo RA. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Current Diabetes Reports. 2008;8(3):173–178.
    1. Højlund K, Mogensen M, Sahlin K, Beck-Nielsen H. Mitochondrial dysfunction in type 2 diabetes and obesity. Endocrinology and Metabolism Clinics of North America. 2008;37(3):713–731.
    1. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–387.
    1. Groop LC, Bonadonna RC, DelPrato S, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. The Journal of Clinical Investigation. 1989;84(1):205–213.
    1. Blaak EE. Metabolic fluxes in skeletal muscle in relation to obesity and insulin resistance. Best Practice and Research: Clinical Endocrinology and Metabolism. 2005;19(3):391–403.
    1. Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiological Reviews. 2006;86(1):205–243.
    1. Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes. 1982;31(11):957–963.
    1. Himsworth HP, Kerr RB. Insulin-sensitive and insulin-insensitive types of diabetes mellitus. Clinical Science. 1939;4:120–152.
    1. Ginsberg H, Kimmerling G, Olefsky JM, Reaven GM. Demonstration of insulin resistance in untreated adult onset diabetic subjects with fasting hyperglycemia. The Journal of Clinical Investigation. 1975;55(3):454–461.
    1. DeFronzo RA, Deibert D, Hendler R, Felig P, Soman V. Insulin sensitivity and insulin binding to monocytes in maturity-onset diabetes. The Journal of Clinical Investigation. 1979;63(5):939–946.
    1. DeFronzo RA, Soman V, Sherwin RS, Hendler R, Felig P. Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding. The Journal of Clinical Investigation. 1978;62(1):204–213.
    1. Butterfield WJH, Whichelow MJ. Peripheral glucose metabolism in control subjects and diabetic patients during glucose, glucose-insulin and insulin sensitivity tests. Diabetologia. 1965;1(1):43–53.
    1. Kashyap SR, Belfort R, Berria R, et al. Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. American Journal of Physiology. 2004;287(3):E537–E546.
    1. Danadian K, Balasekaran G, Lewy V, Meza MP, Robertson R, Arslanian SA. Insulin sensitivity in African-American children with and without family history of type 2 diabetes. Diabetes Care. 1999;22(8):1325–1329.
    1. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. The New England Journal of Medicine. 2004;350(7):664–671.
    1. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–846.
    1. Bogardus C, Lillioja S, Mott D, Reaven GR, Kashiwagi A, Foley JE. Relationship between obesity and maximal insulin-stimulated glucose uptake in vivo and in vitro in Pima Indians. The Journal of Clinical Investigation. 1984;73(3):800–805.
    1. Ferrannini E, Buzzigoli G, Bonadonna R, et al. Insulin resistance in essential hypertension. The New England Journal of Medicine. 1987;317(6):350–357.
    1. Bressler P, Bailey SR, Matsuda M, DeFronzo RA. Insulin resistance and coronary artery disease. Diabetologia. 1996;39(11):1345–1350.
    1. DeFronzo RA. Glucose intolerance and aging. Evidence for tissue insensitivity to insulin. Diabetes. 1979;28(12):1095–1101.
    1. Lankarani M, Valizadeh N, Heshmat R, Peimani M, Sohrabvand F. Evaluation of insulin resistance and metabolic syndrome in patients with polycystic ovary syndrome. Gynecological Endocrinology. 2009;25(8):504–507.
    1. Bailey JL, Zheng B, Hu Z, Price SR, Mitch WE. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. Journal of the American Society of Nephrology. 2006;17(5):1388–1394.
    1. Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. Journal of the American College of Cardiology. 1997;30(2):527–532.
    1. Livingston JN, Moxley RT., III Myotonic dystrophy—phenotype-genotype and insulin resistance. Diabetes Reviews. 1994;2(1):29–42.
    1. Simha V, Garg A. Lipodystrophy: lessons in lipid and energy metabolism. Current Opinion in Lipidology. 2006;17(2):162–169.
    1. Van Cromphaut SJ, Vanhorebeek I, Van den Berghe G. Glucose metabolism and insulin resistance in sepsis. Current Pharmaceutical Design. 2008;14(19):1887–1899.
    1. Pagano G, Cavallo-Perin P, Cassader M, et al. An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. The Journal of Clinical Investigation. 1983;72(5):1814–1820.
    1. Hruz PW. HIV protease inhibitors and insulin resistance: lessons from in-vitro, rodent and healthy human volunteer models. Current Opinion in HIV and AIDS. 2008;3(6):660–665.
    1. Jacob S, Rett K, Wicklmayr M, Agrawal B, Augustin HJ, Dietze G-J. Differential effect of chronic treatment with two beta-blocking agents on insulin sensitivity: the carvedilol-metoprolol study. Journal of Hypertension. 1996;14(4):489–494.
    1. Jani R, Molina M, Matsuda M, et al. Decreased non-insulin-dependent glucose clearance contributes to the rise in fasting plasma glucose in the nondiabetic range. Diabetes Care. 2008;31(2):311–315.
    1. DeFronzo RA. Insulin secretion, insulin resistance, and obesity. International Journal of Obesity. 1982;6(supplement 1):73–82.
    1. Lemay A, Turcot L, Déchêne F, Dodin S, Forest JC. Hyperinsulinemia in nonobese women reporting a moderate weight gain at the beginning of menopause: a useful early measure of susceptibility to insulin resistance. Menopause. 2010;17(2):321–325.
    1. Wedick NM, Snijder MB, Dekker JM, et al. Prospective investigation of metabolic characteristics in relation to weight gain in older adults: the hoorn study. Obesity. 2009;17(8):1609–1614.
    1. Erdmann J, Kallabis B, Oppel U, Sypchenko O, Wagenpfeil S, Schusdziarra V. Development of hyperinsulinemia and insulin resistance during the early stage of weight gain. American Journal of Physiology. 2008;294(3):E568–E575.
    1. Schrauwen P. High-fat diet, muscular lipotoxicity and insulin resistance. Proceedings of the Nutrition Society. 2007;66(1):33–41.
    1. Pan DA, Lillioja S, Kriketos AD, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46(6):983–988.
    1. Phillips DIW, Caddy S, Ilic V, et al. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism. 1996;45(8):947–950.
    1. Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48(8):1600–1606.
    1. Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42(1):113–116.
    1. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–1607.
    1. Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the U.S.: 1990–1998. Diabetes Care. 2000;23(9):1278–1283.
    1. Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. Journal of Clinical Endocrinology and Metabolism. 1991;72(1):96–107.
    1. Reaven GM, Hollenbeck C, Jeng C-Y, Wu MS, Chen Y-DI. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988;37(8):1020–1024.
    1. Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes. 1997;46(6):1001–1009.
    1. Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade. Diabetes. 2000;48(6):1270–1274.
    1. Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. The Journal of Clinical Investigation. 1999;103(2):253–259.
    1. Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. The Journal of Biological Chemistry. 2002;277(52):50230–50236.
    1. Belfort R, Mandarino L, Kashyap S, et al. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes. 2005;54(6):1640–1648.
    1. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51(7):2005–2011.
    1. Richardson DK, Kashyap S, Bajaj M, et al. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. The Journal of Biological Chemistry. 2005;280(11):10290–10297.
    1. Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. The Journal of Clinical Investigation. 1995;96(3):1261–1268.
    1. Bajaj M, Suraamornkul S, Romanelli A, et al. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty acyl-CoAs and insulin action in type 2 diabetic patients. Diabetes. 2005;54(11):3148–3153.
    1. Bajaj M, Suraamornkul S, Kashyap S, Cusi K, Mandarino L, DeFronzo RA. Sustained reduction in plasma free fatty acid concentration improves insulin action without altering plasma adipocytokine levels in subjects with strong family history of type 2 diabetes. Journal of Clinical Endocrinology and Metabolism. 2004;89(9):4649–4655.
    1. Vaag A, Skott P, Damsbo P, Gall M-A, Richter EA, Beck-Nielsen H. Effect of the antilipolytic nicotinic acid analogue acipimox on whole-body and skeletal muscle glucose metabolism in patients with non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1991;88(4):1282–1290.
    1. Santomauro ATMG, Boden G, Silva MER, et al. Overnight lowering of free fatty acids with acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes. 1999;48(9):1836–1841.
    1. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes. 1995;44(8):863–870.
    1. Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50(7):1612–1617.
    1. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and ω-3 fatty acids in muscle phospholipid. Diabetes. 1991;40(2):280–289.
    1. Pagliassotti MJ, Pan D, Prach P, Koppenhafer T, Storlien L, Hill JO. Tissue oxidative capacity, fuel stores and skeletal muscle fatty acid composition in obesity-prone and obesity-resistant rats. Obesity Research. 1995;3(5):459–464.
    1. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine. 2001;7(8):941–946.
    1. Kim JK, Fillmore JJ, Chen Y, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(13):7522–7527.
    1. Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 2002;51(1):144–151.
    1. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–194.
    1. DeFronzo RA. Insulin resistance: the metabolic link between non-insulin-dependent diabetes mellitus, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Current Opinion in Cardiology. 1990;5(5):586–593.
    1. Abumrad N, Coburn C, Ibrahimi A. Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochimica et Biophysica Acta. 1999;1441(1):4–13.
    1. Bonen A, Benton CR, Campbell SE, et al. Plasmalemmal fatty acid transport is regulated in heart and skeletal muscle by contraction, insulin and leptin, and in obesity and diabetes. Acta Physiologica Scandinavica. 2003;178(4):347–356.
    1. Pownall HJ, Hamilton JA. Energy translocation across cell membranes and membrane models. Acta Physiologica Scandinavica. 2003;178(4):357–365.
    1. Hagenfeldt L. Metabolism of free fatty acids and ketone bodies during exercise in normal and diabetic man. Diabetes. 1979;28(supplement 1):66–70.
    1. Hagenfeldt L, Wahren J. Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scandinavian Journal of Clinical and Laboratory Investigation. 1968;21(3):263–276.
    1. Havel RJ, Ekelund LG, Holmgren A. Kinetic analysis of the oxidation of palmitate-1-14C in man during prolonged heavy muscular exercise. Journal of Lipid Research. 1967;8(4):366–373.
    1. Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B. Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. Journal of Physiology. 1993;469:459–478.
    1. Gargiulo CE, Stunlsatz-Krouper SM, Schaffer JE. Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. Journal of Lipid Research. 1999;40(5):881–892.
    1. Ibrahimi A, Bonen A, Blinn WD, et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. The Journal of Biological Chemistry. 1999;274(38):26761–26766.
    1. Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. The Journal of Biological Chemistry. 1999;274(27):19055–19062.
    1. Luiken JJFP, Arumugam Y, Dyck DJ, et al. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. The Journal of Biological Chemistry. 2001;276(44):40567–40573.
    1. Steinberg GR, Dyck DJ, Calles-Escandon J, et al. Chronic leptin administration decreases fatty acid uptake and fatty acid transporters in rat skeletal muscle. The Journal of Biological Chemistry. 2002;277(11):8854–8860.
    1. Cameron-Smith D, Burke LM, Angus DJ, et al. A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. American Journal of Clinical Nutrition. 2003;77(2):313–318.
    1. Roepstorff C, Helge JW, Vistisen B, Kiens B. Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proceedings of the Nutrition Society. 2004;63(2):239–244.
    1. Bonen A, Parolin ML, Steinberg GR, et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport increased sarcolemmal FAT/CD36. FASEB Journal. 2004;18(10):1144–1146.
    1. Kiens B, Roemen THM, Van der Vusse GJ. Muscular long-chain fatty acid content during graded exercise in humans. American Journal of Physiology. 1999;276(2):E352–E357.
    1. Roepstorff C, Vistisen B, Roepstorff K, Kiens B. Regulation of plasma long-chain fatty acid oxidation in relation to uptake in human skeletal muscle during exercise. American Journal of Physiology. 2004;287(4):E696–E705.
    1. Jain SS, Chabowski A, Snook LA, et al. Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6. FEBS Letters. 2009;583(13):2294–2300.
    1. Kelley DE, Goodpaster B, Wing RR, Simoneau J-A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. American Journal of Physiology. 1999;277(6):E1130–E1141.
    1. Hulver MW, Berggren JR, Cortright RN, et al. Skeletal muscle lipid metabolism with obesity. American Journal of Physiology. 2003;284(4):E741–E747.
    1. Steinberg GR, Parolin ML, Heigenhauser GJF, Dyck DJ. Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. American Journal of Physiology. 2002;283(1):E187–E192.
    1. Turcotte LP, Swenberger JR, Tucker MZ, Yee AJ. Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats. Diabetes. 2001;50(6):1389–1396.
    1. Befroy DE, Petersen KF, Dufour S, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56(5):1376–1381.
    1. Szendroedi J, Schmid AI, Chmelik M, et al. Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Medicine. 2007;4(5, article e154)
    1. Petersen KF, Dufour S, Shulman GI. Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Medicine. 2005;2(9, article e233)
    1. Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107(24):3040–3046.
    1. Schrauwen-Hinderling VB, Kooi ME, Hesselink MKC, et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia. 2007;50(1):113–120.
    1. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–1142.
    1. Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhäusl W, Roden M. Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes. 2006;55(1):136–140.
    1. Morino K, Petersen KF, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. The Journal of Clinical Investigation. 2005;115(12):3587–3593.
    1. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005;54(1):8–14.
    1. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(14):8466–8471.
    1. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology. 2006;212(2):167–178.
    1. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50(4):790–796.
    1. Asmann YW, Stump CS, Short KR, et al. Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes. 2006;55(12):3309–3319.
    1. Chavez-Velazquez A, Jani R, Abdul-Ghani MA, et al. Short-Term Elevation of plasma free fatty acids (FFA) decreases skeletal muscle mitochondrial membrane motential in healthy glucose tolerant subjects. Diabetes. 2007;56(supplement 1)
    1. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–2950.
    1. Toledo FGS, Watkins S, Kelley DE. Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. Journal of Clinical Endocrinology and Metabolism. 2006;91(8):3224–3227.
    1. Abdul-Ghani MA, Jani R, Molina M, Chavez A, Tripathy D, DeFronzo RA. Decreased mitochondrial ATP synthesis in obese non-diabetic subjects. Diabetes. 2008;56(supplement 1)
    1. Phielix E, Schrauwen-Hinderling VB, Mensink M, et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes. 2008;57(11):2943–2949.
    1. Mogensen M, Sahlin K, Fernström M, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007;56(6):1592–1599.
    1. Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003;52(9):2191–2197.
    1. Greco AV, Mingrone G, Giancaterini A, et al. Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 2002;51(1):144–151.
    1. Jubrias SA, Esselman PC, Price LB, Cress ME, Conley KE. Large energetic adaptations of elderly muscle to resistance and endurance training. Journal of Applied Physiology. 2001;90(5):1663–1670.
    1. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology. 1984;56(4):831–838.
    1. Chilibeck PD, Syrotuik DG, Bell GJ. The effect of concurrent endurance and strength training on quantitative estimates of subsarcolemmal and intermyofibrillar mitochondria. International Journal of Sports Medicine. 2002;23(1):33–39.
    1. Østergård T, Andersen JL, Nyholm B, et al. Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-degree relatives of type 2 diabetic patients. American Journal of Physiology. 2006;290(5):E998–E1005.
    1. Menshikova EV, Ritov VB, Toledo FGS, Ferrell RE, Goodpaster BH, Kelley DE. Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. American Journal of Physiology. 2005;288(4):E818–E825.
    1. Short KR, Vittone JL, Bigelow ML, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes. 2003;52(8):1888–1896.
    1. Chavez AO, Kamath S, Jani R, et al. Effect of short-term free fatty acids elevation on mitochondrial function in skeletal muscle of healthy individuals. The Journal of Clinical Endocrinology & Metabolism. 2010;95(1):422–429.
    1. Abdul-Ghani MA, Muller F, Liu Y, et al. Deleterious effect of elevated fatty acid metabolites concentration on skeletal muscle mitochondrial ATP synthesis. Diabetes. 2007;56(supplement 1)
    1. Benton CR, Nickerson JG, Lally J, et al. Modest PGC-1α overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. The Journal of Biological Chemistry. 2008;283(7):4228–4240.
    1. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127(6):1109–1122.
    1. Lim JH, Lee JI, Suh YH, Kim W, Song JH, Jung MH. Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells. Diabetologia. 2006;49(8):1924–1936.
    1. Brown AE, Elstner M, Yeaman SJ, Turnbull DM, Walker M. Does impaired mitochondrial function affect insulin signaling and action in cultured human skeletal muscle cells? American Journal of Physiology. 2008;294(1):E97–E102.
    1. Pospisilik JA, Knauf C, Joza N, et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell. 2007;131(3):476–491.
    1. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.
    1. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. The Journal of Clinical Investigation. 2000;106(2):165–169.
    1. Whitehead JP, Clark SF, Ursø B, James DE. Signalling through the insulin receptor. Current Opinion in Cell Biology. 2000;12(2):222–228.
    1. Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986;45(5):721–732.
    1. Chou CK, Dull TJ, Russell DS. Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. The Journal of Biological Chemistry. 1987;262(4):1842–1847.
    1. Virkamäki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. The Journal of Clinical Investigation. 1999;103(7):931–943.
    1. Sun XJ, Miralpeix M, Myers MG, Jr., et al. Expression and function of IRS-1 in insulin signal transmission. Journal of Biological Chemistry. 1992;267(31):22662–22672.
    1. Cross D, Alessi D, Vandenheed J, McDowell H, Hundal H, Cohen P. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin but not rapamycin. Biochemical Journal. 1994;267:303–321.
    1. Osawa H, Sutherland C, Robey RB, Printz RL, Granner DK. Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin. The Journal of Biological Chemistry. 1996;271(28):16690–16694.
    1. Lazar DF, Wiese RJ, Brady MJ, et al. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. The Journal of Biological Chemistry. 1995;270(35):20801–20807.
    1. Dent P, Lavoinne A, Nakielny S, Caudwell FB, Watt P, Cohen P. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature. 1990;348(6299):302–308.
    1. Newgard CB, Brady MJ, O’Doherty RM, Saltiel AR. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes. 2000;49(12):1967–1977.
    1. Shepherd PR, Nave BT, Siddle K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-56 kinase. Biochemical Journal. 1995;305(1):25–28.
    1. Freidenberg GR, Henry RR, Klein HH, Reichart DR, Olefsky JM. Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects. Journal of Clinical Investigation. 1987;79(1):240–250.
    1. Caro JF, Sinha MK, Raju SM, et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. The Journal of Clinical Investigation. 1987;79(5):1330–1337.
    1. Caro JF, Ittoop O, Pories WJ, et al. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity. The Journal of Clinical Investigation. 1986;78(1):249–258.
    1. Trischitta V, Brunetti A, Chiavetta A, Benzi L, Papa V, Vigneri R. Defects in insulin-receptor internalization and processing in monocytes of obese subjects and obese NIDDM patients. Diabetes. 1989;38(12):1579–1584.
    1. Klein HH, Vestergaard H, Kotzke G, Pedersen O. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes. 1995;44(11):1310–1317.
    1. Kashiwagi A, Verso MA, Andrews J. In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1983;72(4):1246–1254.
    1. Lonnroth P, Digirolamo M, Krotkiewski M, Smith U. Insulin binding and responsiveness in fat cells from patients with reduced glucose tolerance and type II diabetes. Diabetes. 1983;32(8):748–754.
    1. Olefsky JM, Reaven GM. Insulin binding in diabetes. Relationships with plasma insulin levels and insulin sensitivity. Diabetes. 1977;26(7):680–688.
    1. Moller DE, Yokota A, Flier JS. Normal insulin-receptor cDNA sequence in Pima Indians with NIDDM. Diabetes. 1989;38(11):1496–1500.
    1. Kusari J, Verma US, Buse JB, Henry RR, Olefsky JM. Analysis of the gene sequences of the insulin receptor and the insulin-sensitive glucose transporter (GLUT-4) in patients with common-type non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1991;88(4):1323–1330.
    1. Nolan JJ, Freidenberg G, Henry R, Reichart D, Olefsky JM. Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. Journal of Clinical Endocrinology and Metabolism. 1994;78(2):471–477.
    1. Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. The Journal of Clinical Investigation. 1988;82(4):1398–1406.
    1. Kellerer M, Kroder G, Tippmer S, et al. Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes. 1994;43(3):447–453.
    1. Pratipanawatr W, Pratipanawatr T, Cusi K, et al. Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes. 2001;50(7–12):2572–2578.
    1. Krook A, Björnholm M, Galuska D, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes. 2000;49(2):284–292.
    1. Kim Y-B, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. The Journal of Clinical Investigation. 1999;104(6):733–741.
    1. Andreelli F, Laville M, Ducluzeau P-H, et al. Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia. 1999;42(3):358–364.
    1. Folli F, Saad MJA, Backer JM, Kahn CR. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. The Journal of Clinical Investigation. 1993;92(4):1787–1794.
    1. Morino K, Neschen S, Bilz S, et al. Muscle-pecific IRS-1 ser → ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes. 2008;57(10):2644–2651.
    1. Hitman GA, Hawrami K, McCarthy MI, et al. Insulin receptor substrate-1 gene mutations in NIDDM; implications for the study of polygenic disease. Diabetologia. 1995;38(4):481–486.
    1. Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. The Journal of Clinical Investigation. 1999;103(2):253–259.
    1. Khan WA, Blobe GC, Hannun YA. Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C . Cellular Signalling. 1995;7(3):171–184.
    1. Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. The Journal of Biological Chemistry. 2002;277(52):50230–50236.
    1. Schmitz-Peiffer C, Browne CL, Oakes ND, et al. Alterations in the expression and cellular localization of protein kinase C isozymes ε and θ are associated with insulin resistance in skeletal muscle of the high-fat-fed rat. Diabetes. 1997;46(2):169–178.
    1. Schmitz-Peiffer C, Oakes ND, Browne CL, Kraegen EW, Biden TJ. Reversal of chronic alterations of skeletal muscle protein kinase C from fat-fed rats by BRL-49653. American Journal of Physiology. 1997;273(5):E915–E921.
    1. Lam TK, Yoshii H, Haber CA, et al. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab. 2002;283(4):E682–91.
    1. Tanti J-F, Jager J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Current Opinion in Pharmacology. 2009;9(6):753–762.
    1. Sell H, Eckel J, Dietze-Schroeder D. Pathways leading to muscle insulin resistance—the muscle-fat connection. Archives of Physiology and Biochemistry. 2006;112(2):105–113.
    1. Hsueh WA, Law RE. Insulin signaling in the arterial wall. American Journal of Cardiology. 1999;84(1 A):21J–24J.
    1. Jiang ZY, Lin Y-W, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. The Journal of Clinical Investigation. 1999;104(4):447–457.
    1. Shepherd PR, Kahn BB. Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus. The New England Journal of Medicine. 1999;341(4):248–257.
    1. Hunter SJ, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system. American Journal of Medicine. 1998;105(4):331–345.
    1. Bell GI, Kayano T, Buse JB, et al. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990;13(3):198–208.
    1. Joost H-G, Bell GI, Best JD, et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. American Journal of Physiology. 2002;282(4):E974–E976.
    1. Stuart CA, Howell MEA, Zhang Y, Yin D. Insulin-stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle. Journal of Clinical Endocrinology and Metabolism. 2009;94(9):3535–3542.
    1. Rogers PA, Fisher RA, Harris H. An electrophoretic study of the distribution and properties of human hexokinases. Biochemical Genetics. 1975;13(11-12):857–866.
    1. Garvey WT, Huecksteadt TP, Matthaei S, Olefsky JM. Role of glucose transporters in the cellular insulin resistance of type II non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1988;81(5):1528–1536.
    1. Zierath JR, He L, Gumà A, Odegaard Wahlström E, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia. 1996;39(10):1180–1189.
    1. Krook A, Björnholm M, Galuska D, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes. 2000;49(2):284–292.
    1. Pedersen O, Bak JF, Andersen PH, et al. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity for NIDDM. Diabetes. 1990;39(7):865–870.
    1. Eriksson J, Koranyi L, Bourey R, et al. Insulin resistance in type 2 (non-insulin-dependent) diabetic patients and their relatives is not associated with a defect in the expression of the insulin-responsive glucose transporter (GLUT-4) gene in human skeletal muscle. Diabetologia. 1992;35(2):143–147.
    1. Bonadonna RC, Del Prato S, Saccomani MP, et al. Transmembrane glucose transport in skeletal muscle of patients with non-insulin-dependent diabetes. The Journal of Clinical Investigation. 1993;92(1):486–494.
    1. Bonadonna RC, Del Prato S, Bonora E, et al. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes. 1996;45(supplement 3):915–925.
    1. Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. The New England Journal of Medicine. 1999;341(4):240–246.
    1. Williams KV, Price JC, Kelley DE. Interactions of impaired glucose transport and phosphorylation in skeletal muscle insulin resistance. A dose-response assessment using positron emission tomography. Diabetes. 2001;50(9):2069–2079.
    1. Choi W-H, O’Rahilly S, Buse JB, et al. Molecular scanning of insulin-responsive glucose transporter (GLUT4) gene in NIDDM subjects. Diabetes. 1991;40(12):1712–1718.
    1. Perriott LM, Kono T, Whitesell RR, et al. Glucose uptake and metabolism by cultured human skeletal muscle cells: rate-limiting steps. American Journal of Physiology. 2001;281(1):E72–E80.
    1. Printz RL, Ardehali H, Koch S, Granner DK. Human hexokinase II mRNA and gene structure. Diabetes. 1995;44(3):290–294.
    1. Vogt C, Ardehali H, Iozzo P, et al. Regulation of hexokinase II expression in human skeletal muscle in vivo. Metabolism. 2000;49(6):814–818.
    1. Pendergrass M, Koval J, Vogt C, et al. Insulin-induced hexokinase II expression is reduced in obesity and NIDDM. Diabetes. 1998;47(3):387–394.
    1. Mandarino LJ, Printz RL, Cusi KA, et al. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. American Journal of Physiology. 1995;269(4):E701–E708.
    1. Ducluzeau P-H, Perretti N, Laville M, et al. Regulation by insulin of gene expression in human skeletal muscle and adipose tissue: evidence for specific defects in type 2 diabetes. Diabetes. 2001;50(5):1134–1142.
    1. Lehto M, Huang X, Davis EM, et al. Human hexokinase II gene: exon-intron organization, mutation screening in NIDDM, and its relationship to muscle hexokinase activity. Diabetologia. 1995;38(12):1466–1474.
    1. Laakso M, Malkki M, Kekalainen P, Kuusisto J, Deeb SS. Polymorphisms of the human hexokinase II gene: lack of association with NIDDM and insulin resistance. Diabetologia. 1995;38(5):617–622.
    1. Echwald SM, Bjorbaek C, Hansen T, et al. Identification of four amino acid substitutions in hexokinase II and studies of relationships to NIDDM, glucose effectiveness, and insulin sensitivity. Diabetes. 1995;44(3):347–353.
    1. Gulli G, Ferrannini E, Stern M, Haffner S, DeFronzo RA. The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes. 1992;41(12):1575–1586.
    1. Golay A, DeFronzo RA, Ferrannini E, et al. Oxidative and non-oxidative glucose metabolism in non-obese type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1988;31(8):585–591.
    1. Lillioja S, Mott DM, Zawadzki JK, Young AA, Abbott WG, Bogardus C. Glucose storage is a major determinant of in vivo ‘insulin resistance’ in subjects with normal glucose tolerance. Journal of Clinical Endocrinology and Metabolism. 1986;62(5):922–927.
    1. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. The New England Journal of Medicine. 1990;322(4):223–228.
    1. Rothman DL, Magnusson I, Cline G, et al. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(4):983–987.
    1. Vaag A, Henriksen JE, Madsbad S, Holm N, Beck-Nielsen H. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1995;95(2):690–698.
    1. Yki-Jarvinen H, Mott D, Young AA, Stone K, Bogardus C. Regulation of glycogen synthase and phosphorylase activities by glucose and insulin in human skeletal muscle. The Journal of Clinical Investigation. 1987;80(1):95–100.
    1. Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochemical Journal. 2001;359, part 1:1–16.
    1. Cohen P. The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philosophical Transactions of the Royal Society B. 1999;354(1382):485–495.
    1. Damsbo P, Vaag A, Hother-Nielsen O, Beck-Nielsen H. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1991;34(4):239–245.
    1. Mandarino LJ, Wright KS, Verity LS, et al. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase: evidence for their role in oxidative and nonoxidative glucose metabolism. The Journal of Clinical Investigation. 1987;80(3):655–663.
    1. Thorburn AW, Gumbiner B, Bulacan F, Wallace P, Henry RR. Intracellular glucose oxidation and glycogen synthase activity are reduced in non-insulin-dependent (type II) diabetes independent of impaired glucose uptake. The Journal of Clinical Investigation. 1990;85(2):522–529.
    1. Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1992;89(3):782–788.
    1. Nyomba BL, Freymond D, Raz I, Stone K, Mott DM, Bogardus C. Skeletal muscle glycogen synthase activity in subjects with non-insulin-dependent diabetes mellitus after glyburide therapy. Metabolism. 1990;39(11):1204–1210.
    1. Pratipanawatr T, Cusi K, Ngo P, Pratipanawatr W, Mandarine LJ, DeFronzo RA. Normalization of plasma glucose concentration by insulin therapy improves insulin-stimulated glycogen synthesis in type 2 diabetes. Diabetes. 2002;51(2):462–468.
    1. Vestergaard H, Lund S, Larsen FS, Bjerrum OJ, Pedersen O. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation. 1993;91(6):2342–2350.
    1. Vestergaard H, Bjorbaek C, Andersen PH, Bak JF, Pedersen O. Impaired expression of glycogen synthase mRNA in skeletal muscle of NIDDM patients. Diabetes. 1991;40(12):1740–1745.
    1. Majer M, Mott DM, Mochizuki H, et al. Association of the glycogen synthase locus on 19q13 with NIDDM in Pima Indians. Diabetologia. 1996;39(3):314–321.
    1. Orho M, Nikula-Ijas P, Schalin-Jantti C, Permutt MA, Groop LC. Isolation and characterization of the human muscle glycogen synthase gene. Diabetes. 1995;44(9):1099–1105.
    1. Bjørbæk C, Echwald SM, Hubricht P, et al. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM. Diabetes. 1994;43(8):976–983.
    1. Bjørbæk C, Vik TA, Echwald SM, et al. Cloning of a human insulin-stimulated protein kinase (ISPK-1) gene and analysis of coding regions and mRNA levels of the ISPK-1 and the protein phosphatase-1 genes in muscle from NIDDM patients. Diabetes. 1995;44(1):90–97.
    1. Prochazka M, Mochizuki H, Baier LJ, Cohen PTW, Bogardus C. Molecular and linkage analysis of type-1 protein phosphatase catalytic beta-subunit gene: lack of evidence for its major role in insulin a resistance in Pima Indians. Diabetologia. 1995;38(4):461–466.
    1. Schalin-Jantti C, Harkonen M, Groop LC. Impaired activation of glycogen synthase in people at increased risk for developing NIDDM. Diabetes. 1992;41(5):598–604.
    1. Del Prato S, Bonadonna RC, Bonora E, et al. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. The Journal of Clinical Investigation. 1993;91(2):484–494.
    1. Falholt K, Jensen I, Lindkaer Jensen S, et al. Carbohydrate and lipid metabolism of skeletal muscle in type 2 diabetic patients. Diabetic Medicine. 1988;5(1):27–31.
    1. Mandarino LJ, Madar Z, Kolterman OG, Bell JM, Olefsky JM. Adipocyte glycogen synthase and pyruvate dehydrogenase in obese and type II diabetic subjects. American Journal of Physiology. 1986;251(4):E489–E496.
    1. Kelley DE, Mokan M, Mandarino LJ. Intracellular defects in glucose metabolism in obese patients with NIDDM. Diabetes. 1992;41(6):698–706.
    1. Groop LC, Bonadonna RC, Simonson DC, Petrides AS, Shank M, DeFronzo RA. Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity. American Journal of Physiology. 1992;263(1):E79–E84.
    1. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet. 1963;281(7285):785–789.

Source: PubMed

3
Suscribir