Participatory workplace interventions can reduce sedentary time for office workers--a randomised controlled trial

Sharon Parry, Leon Straker, Nicholas D Gilson, Anne J Smith, Sharon Parry, Leon Straker, Nicholas D Gilson, Anne J Smith

Abstract

Background: Occupational sedentary behaviour is an important contributor to overall sedentary risk. There is limited evidence for effective workplace interventions to reduce occupational sedentary time and increase light activity during work hours. The purpose of the study was to determine if participatory workplace interventions could reduce total sedentary time, sustained sedentary time (bouts >30 minutes), increase the frequency of breaks in sedentary time and promote light intensity activity and moderate/vigorous activity (MVPA) during work hours.

Methods: A randomised controlled trial (ANZCTR NUMBER: ACTN12612000743864) was conducted using clerical, call centre and data processing workers (n = 62, aged 25-59 years) in 3 large government organisations in Perth, Australia. Three groups developed interventions with a participatory approach: 'Active office' (n = 19), 'Active Workstation' and promotion of incidental office activity; 'Traditional physical activity' (n = 14), pedometer challenge to increase activity between productive work time and 'Office ergonomics' (n = 29), computer workstation design and breaking up computer tasks. Accelerometer (ActiGraph GT3X, 7 days) determined sedentary time, sustained sedentary time, breaks in sedentary time, light intensity activity and MVPA on work days and during work hours were measured before and following a 12 week intervention period.

Results: For all participants there was a significant reduction in sedentary time on work days (-1.6%, p = 0.006) and during work hours (-1.7%, p = 0.014) and a significant increase in number of breaks/sedentary hour on work days (0.64, p = 0.005) and during work hours (0.72, p = 0.015); there was a concurrent significant increase in light activity during work hours (1.5%, p = 0.012) and MVPA on work days (0.6%, p = 0.012).

Conclusions: This study explored novel ways to modify work practices to reduce occupational sedentary behaviour. Participatory workplace interventions can reduce sedentary time, increase the frequency of breaks and improve light activity and MVPA of office workers by using a variety of interventions.

Trial registration: Australian New Zealand Clinical Trials Registry ACTN12612000743864.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Diagram of the flow of…
Figure 1. Diagram of the flow of participants through the study.
Figure 2. Diagram of the flow of…
Figure 2. Diagram of the flow of procedures involved in each intervention.

References

    1. Hamilton MT, Hamilton DG, Zderic TW (2007) Role of low energy expenditure and sitting in obesity, metabolic syndrome, Type-2 diabetes, and cardiovascular disease. Diabetes 56: 2655–2667.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, et al. (2008) Breaks in sedentary time. Diab Care 31: 661–666.
    1. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, et al. (2008) Objectively measured sedentary time, physical activity, and metabolic risk. Diab Care 31: 369–371.
    1. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE (2003) Television Watching and Other Sedentary Behaviours in Relation to Risk of Obesity and Type 2 Diabetes Mellitus in Women. JAMA 289: 1785–1791.
    1. Tremblay MS, Colley RC, Saunders TJ, Healy G, Owen N (2010) Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab 35: 725–740.
    1. van der Ploeg H, Chey T, Korda R, Banks E, Bauman A (2012) Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med 172: 494–500.
    1. Healy GN, Dunstan D, Salmon J, Cerin E, Shaw JE, et al. (2007) Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diab Care 30: 1384–1389.
    1. Healy GN, Mathews CE, Dunstan D, Winkler EAH, Owen N (2011) Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–6. Eur Heart J 32: 590–597.
    1. Helmerhorst HJF, Wijndaele W, Brange S, Wareham NJ, Ekelund U (2009) Objectively measured sedentary time may predict insulin resisitance independent of moderate- and vigorous-intensity physical activity. Diabetes 58: 1776–1779.
    1. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, et al. (2012) Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diab Care 35: 976–983.
    1. Swartz AM, Squires L, Strath SJ (2011) Energy expenditure of interruptions to sedentary behaviour. IJBNPA 8: 69.
    1. Sedentary Behaviour Research Network (2012) Letter to the Editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab 37.
    1. Borodulin K, Laatikainen T, Juolevi A, Jousilahti P (2007) Thirty-year trends of physical activity in relation to age, calendar time and birth cohort in Finnish adults. Eur J Public Health 18: 339–344.
    1. Juneau C, Potvin L (2010) Trends in leisure-, transport-, and work-related physical activity in Canada 1994–2005. Prev Med 51: 384–386.
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C (2009) Sitting time and mortality from all causes, cardiovascular disease and cancer. Med Sci Sports Exerc 41: 998–1005.
    1. Chau J, van der Ploeg HP, Merom D, Chey T, Bauman A (2012) Cross-sectional associations between occupational and leisure-time sitting, physical activity and obesity in working adults. Prev Med 54: 195–200.
    1. Mummery WK, Schofield GM, Steele R, Eakin EG, Brown WJ (2005) Occupational Sitting Time and Overweight and Obesity in Australian Workers. Am J Prev Med 29: 91–97.
    1. Graff-Iversen S, Selmer R, Sørensen M, Skurtveit S (2007) Occupational physical activity, overweight, and mortality: a follow-up study of 47, 405 Norwegian women and men. Res Q Exerc Sport 78: 151–161.
    1. van Uffelen JGZ, Wong J, Chau JY, van der Ploeg HP, Riphagen I, et al. (2010) Occupational Sitting and Health Risks: A Systematic Review. Am J Prev Med 39: 379–388.
    1. Parry S, Straker L (2013) Office work contributes significantly to sedentary behaviour associated risk. BMC Public Health 13: 296.
    1. Straker L, Mathiassen SE (2009) Increased physical workloads in modern work - a necessity for better health and performance? Ergonomics 52: 1215–1225.
    1. Pressler A, Knebel U, Kolbl D, Esefeld K, Scherr J, et al. (2010) An internet-delivered exerise intervention for workplace health promotion in overweight sedentary emplyees: A reandomized trial. Prev Med 51: 234–239.
    1. Straker L, Burgess-Limerick R, Pollock C, Egeskov R (2004) A randomized and controlled trial of a participative ergonomics intervention to reduce injuries associated with manual tasks: phyical risk and legislative compliance. Ergonomics 47: 166–188.
    1. Szeto G, Straker L, O’Sullivan P (2009) During computing tasks symptomatic female office workers demonstrate a trend towards higher cervical postural muscle load than asymptomatic office workers: an experimental study. Aust J Physiother 55: 257–262.
    1. Taieb-Maimon M, Cwikel J, Shapira B, Orenstein I (2012) The effectiveness of a training method using self-modeling webcam photos for reducing musculoskeletal risk amoung office workers using computers. Appl Ergon 43: 376–385.
    1. Robertson M, Amick III B, DeRango K, Rooney T, Bazzani L, et al. (2009) The effects of an office ergonomics training and chair intervention on worker knowledge, behavior and musculoskeletal risk. Appl Ergon 40: 124–135.
    1. Anderson LM, Quinn TA, Glanz K, Ramirez G, Kahwati LC, et al. (2009) The effectiveness of worksite nutrition and physical activity interventions for controlling employee overweight and obesity. Am J Prev Med 37: 340–357.
    1. Ovbiosa-Akinbosoye OE, Long A (2011) Factors associated with long-term weight loss and weight maintenance analysis of a comprehensive workplace wellness wrogram. JOEM 53: 1236–1242.
    1. Cahill K, Moher M, Lancaster T (2008) Workplace interventions for smoking cessation. Cochrane Databse of Systematic Reviews Art. No.: CD003440.
    1. Osilla KC, Van Busum K, Schnyer C, Larkin JW, Eibner C, et al. (2012) Systematic review of the impact of worksite wellness programs. Am J Manag Care 18: e68–e81.
    1. Freak-Poli R, Wolfe R, Backholer K, de Courten M, Peeters A (2011) Impact of a pedometer-based workplace health program on cardiovascular and diabetes risk profile. Prev Med 53: 162–171.
    1. Owen N, Healy G, Mathews CE, Dunstan D (2010) Too much sitting: the population health science of sedentary behaviour. Exerc Sport Sci Rev 38: 105–113.
    1. Chau JY, der Ploeg HPv, van Uffelen JGZ, Wong J, Riphagen I, et al. (2010) Are workplace interventions to reduce sitting effective? A systematic review. Prev Med 51: 352–356.
    1. Kirk MA, Rhodes RE (2011) Occupation correlates of adults’ participation in leisure-time physical activity - a systematic review. Am J Prev Med 40: 476–485.
    1. Healy GN, Clark BK, Winkler EAH, Gardiner PA, Brown WJ, et al. (2011) Measurement of Adults’ Sedentary Time in Population-Based Studies. Am J Prev Med 41: 216–227.
    1. Chastin SFM, Granat MH (2010) Methods for objective measure, quantification and analysis of sedentary behaviour and inactivity. Gait Posture 31: 82–86.
    1. Abbott R, Straker L, Mathiassen SE ((in press)) Patterning of children’s sedentary time at and away from school. Obesity.
    1. Alkhajah T, Reeves M, Eakin E, Winkler EAH, Owen N, et al. (2012) Sit–stand workstations - a pilot intervention to reduce office sitting time. Am J Prev Med 43: 298–303.
    1. Evans R, Fawole H, Sheriff S, Dall PM, Grant MP, et al. (2012) Point-of-choice prompts to reduce sitting time at work - a randomized trial. Am J Prev Med 43: 293–297.
    1. Osteras H, Hammer S (2006) The effectiveness of a pragmatic worksite physical activity program on maximal oxygen consumption and the physical activity level in healthy people. J Bodyw Mov Ther 10: 51–57.
    1. Dishman R, Dejoy D, Wilson M, Vandenberg r (2009) Move to improve: A randomized workplace trial to increase physical activity. Am J Prev Med 36: 133–141.
    1. Engbers L, van Poppel M, van Mechelen W (2007) Modest effects of a controlled worksite environmental intervention on cardiovascular risk in office workers. Prev Med 44: 356–362.
    1. Griffiths KL, Mackey MG, Adamson BJ (2007) The Impact of a Computerized Work Environment on Professional Occupational Groups and Behavioural and Physiological Risk Factors for Musculoskeletal Symptoms: A Literature Review. J Occup Rehabil 17: 743–765.
    1. Andersen LL, Christensen KB, Holtermann A, Poulsen OM, Sjøgaard G, et al. (2010) Effect of physical exercise interventions on musculoskeletal pain in all body regions among office workers: A one-year randomized controlled trial. Man Ther 15: 100–104.
    1. Andersen LL, Saervoll CA, Mortensen OS, Poulsen OM, Hannerz H, et al. (2011) Effectiveness of small daily amounts of progressive resistance training for frequent neck/shoulder pain: Randomised controlled trial. PAIN 152: 440–446.
    1. Gilson ND, Suppini A, Ryde GC, Brown HE, Brown WJ (2012) Does the use of standing ‘hot’ desks change sedentary work time in an open plan office? Prev Med 54: 56–67.
    1. Levine JA, Miller JM (2007) The energy expenditure of using a “walk-and-work” desk for office workers. Br J Sports Med 47: 558–561.
    1. Straker L, Levine J, Campell A (2009) The effects of walking and cycling computer workstations on keyboard and mouse performance. Hum Factors 51: 831–844.
    1. Rivilis I, Van Eerd D, Cullen K, Cole DC, Irvin E, et al. (2008) Effectiveness of participatory ergonomic interventions on health outcomes: A systematic review. Appl Ergon 39: 342–358.
    1. Kuorinka I, Patry L (1995) Participation as a means of promoting occupational health. Int J Ind Ergon 15: 365–370.
    1. Nagamachi M (1995) Requisites and practices of participatory ergonomics. Int J Ind Ergon 15: 371–377.
    1. Loisel P, Gosselin L, Durand P, Lemaire J, Poitras S, et al. (2001) Implementation of a participatory ergonomics program in the rehabilitation of workers suffering from subacute back pain. Appl Ergon 32: 53–60.
    1. Rosecrance JC, Cook TM (2000) The Use of Participatory Action Research and Ergonomics in the Prevention of Work-Related Musculoskeletal Disorders in the Newspaper Industry. Appl Occup Environ Hyg 15: 255–262.
    1. van Eerd D, Cole D, Irvin E, Mahood Q, Keown K, et al. (2010) Process and implementation of participatory ergonomic interventions: a systematic review. Ergonomics 53: 1153–1166.
    1. O’Driscoll M, Cooper G (2002). Psychology at work: Penguin. 203–228.
    1. Shaw WS, Main CJ, Johnson V (2011) Addressing occupational factors in the management of low back pain: implications for physical therapist practice. Phys Ther 91: 777–789.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M (2008) Physical activity in the United States measured by accelerometry. Med Sci Sports Exerc 40: 181–188.
    1. Welk GJ, Schaben JA, Morrow JR Jr (2004) Reliability of accelerometer-based activity monitors: A generalizability study. Med Sci Sports Exerc 36: 1637–1645.
    1. Welk GJ (2002) Physical activity assessments for health-related research. Champaign, IL: Human Kinetics Publishers.
    1. Mathiassen SE (2006) Diversity and variation in biomechanical exposure: What is it, and why would we like to know? Appl Ergon 37: 419–427.
    1. Straker L, Campell A, Mathiassen SE, Abbott R, Parry S, et al. (in press) Capturing the pattern of physical activity and sedentary behaviour: Exposure Variation Analysis of accelerometer data. JPAH.
    1. Freedson PS, Melonson E, Sirard J (1998) Calibration of Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 30: 777–781.
    1. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, et al. (2008) Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epid 167: 875–881.
    1. Hagstromer M, Oja P, Sjostrom M (2007) Physical activity and inactivity in an adult population assessed by accelerometry. Med Sci Sports Exerc 39: 1502–1508.
    1. Metzger JS, Catellier DJ, Evenson KR, Treuth MS, Rosamond WD, et al. (2008) Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc 40: 630–638.
    1. Straker L, Campell A (2012) Translation equations to compare ActiGraph GT3X and Actical accelerometers activity counts. BMC Med Res Methodol 12: 54.
    1. Jago R, Fox KR, Page AS, Brockman R, Thompson JL (2010) Physical activity and sedentary behaviour typologies of 10–11 year olds. IJBNPA 7: 59–59.
    1. Steele R, van Sluijs E, Cassidy A, Griffin S, Ekelund U (2009) Targeting sedentary time or moderate- and vigorous-intensity activity: independent relations with adiposity in a population-based sample of 10-y-old British children. Am J Clin Nutr 90: 1185–1192.
    1. Trost SG, McIver KL, Pate RR (2005) Conducting accelerometer-based activity assessment in field -based research. Med Sci Sports Exerc 37: S531–S543.
    1. Ward DS, Evenson KR, Vaughn A, Brown Rodgers A, Troiano RP (2005) Accelerometer use in physical activity: best practices and research recommendation. Med Sci Sports Exerc 37: S582–S588.
    1. Camhi SM, Sisson SB, Johnson WD, Katzmarzyk PT, Tudor-Locke C (2011) Accelerometer-determined moderate intensity activity and cardiometabolic health. Prev Med 52: 358–360.
    1. Tremblay M, LeBlanc AG, Janssen I, Kho ME, Hicks A, et al. (2011) Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab 36: 59–64.
    1. (1986) Repetition strain injury: A report and model code of practice. In: Commission NOHaS, editor. Canberra: Australian Government Publishing Service.
    1. Koepp G, Manohar C, McCrady-Spitzer S, Ben-Ner A, Flint-Paulson D, et al. (in press) Treadmill desks: a one-year prospective trial. Obesity.
    1. Gilson ND, Puig-Ribera A, McKenna J, Brown WJ, Burton NW, et al. (2009) Do walking strategies to increase physical activity reduce reported sitting in workplaces: a randomized control trial. IJBNPA 6: 43.

Source: PubMed

3
Suscribir