Randomised, double-blind, placebo-controlled clinical trial for evaluating the efficacy of intracoronary injection of autologous bone marrow mononuclear cells in the improvement of the ventricular function in patients with idiopathic dilated myocardiopathy: a study protocol

Miguel Romero, José Suárez-de-Lezo, Concha Herrera, Manuel Pan, José López-Aguilera, José Suárez-de-Lezo Jr, Flor Baeza-Garzón, Francisco Javier Hidalgo-Lesmes, Olga Fernández-López, Juliana Martínez-Atienza, Eva Cebrián, Vanesa Martín-Palanco, Rosario Jiménez-Moreno, Rosario Gutiérrez-Fernández, Sonia Nogueras, Maria Dolores Carmona, Soledad Ojeda, Natividad Cuende, Rosario Mata, Miguel Romero, José Suárez-de-Lezo, Concha Herrera, Manuel Pan, José López-Aguilera, José Suárez-de-Lezo Jr, Flor Baeza-Garzón, Francisco Javier Hidalgo-Lesmes, Olga Fernández-López, Juliana Martínez-Atienza, Eva Cebrián, Vanesa Martín-Palanco, Rosario Jiménez-Moreno, Rosario Gutiérrez-Fernández, Sonia Nogueras, Maria Dolores Carmona, Soledad Ojeda, Natividad Cuende, Rosario Mata

Abstract

Background: Cellular therapies have been increasingly applied to diverse human diseases. Intracoronary infusion of bone marrow-derived mononuclear cells (BMMNC) has demonstrated to improve ventricular function after acute myocardial infarction. However, less information is available about the role of BMMNC therapy for the treatment of dilated myocardiopathies (DCs) of non-ischemic origin. This article presents the methodological description of a study aimed at investigating the efficacy of intracoronary injection of autologous BMMNCs in the improvement of the ventricular function of patients with DC.

Methods: This randomised, placebo-controlled, double-blinded phase IIb clinical trial compares the improvement on ventricular function (measured by the changes on the ejection fraction) of patients receiving the conventional treatment for DC in combination with a single dose of an intracoronary infusion of BMMNCs, with the functional recovery of patients receiving placebo plus conventional treatment. Patients assigned to both treatment groups are monitored for 24 months. This clinical trial is powered enough to detect a change in Left Ventricular Ejection Fraction (LVEF) equal to or greater than 9%, although an interim analysis is planned to re-calculate sample size.

Discussion: The study protocol was approved by the Andalusian Coordinating Ethics Committee for Biomedical Research (Comité Coordinador de Ética en Investigación Biomédica de Andalucia), the Spanish Medicines and Medical Devices Agency (Agencia Española de Medicamentos y Productos Sanitarios), and is registered at the EU Clinical Trials Register (EudraCT: 2013-002015-98). The publication of the trial results in scientific journals will be performed in accordance with the applicable regulations and guidelines to clinical trials.

Trial registration: ClinicalTrials.gov Identifier NCT02033278 (First Posted January 10, 2014): https://ichgcp.net/clinical-trials-registry/NCT02033278 ; EudraCT number: 2013-002015-98, EU CT Register: https://www.clinicaltrialsregister.eu/ctr-search/search?query=2013-002015-98 . Trial results will also be published according to the CONSORT statement at conferences and reported peer-reviewed journals.

Keywords: Bone marrow mononuclear cells; Cell therapy; Dilated myocardiopathy; Randomized controlled trial.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study design and assessment timeline. Clinical trial visits are structured in 9 time-points, that include two pre-infusion visits (screening and randomization), BMMNC/placebo infusion day, and 6 post-infusion follow-up evaluation time-points according to a decreasing frequency: 24 h, 3 months, 6 months, 12 months, 18 months and 24 months. The procedures and evaluations performed are detailed for each visit. Biochemical determinations: glucose, urea, creatinine, sodium, potassium, C reactive protein (CRP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), bilirubin, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, lactate dehydrogenase (LDH). Cardiac enzymes: Creatine kinase (CK), Troponin I or US and brain natriuretic peptide (BNP) or N-terminal fragment of pro-brain natriuretic peptide (NT-proBNP). Demographic data: date of born, sex. Echocardiogram (Echo): Left ventricular (LV) ejection fraction (LVEF, %), LV end-diastolic volume (LVEDV, ml), LV end-systolic volume (LVESV, ml), LV end-diastolic diameter (LVED, mm), LV end-systolic diameter (LVSD, mm), left atrial (LA) area (cm2), right ventricular (RV) end-diastolic volume (RVEDV, ml), Tricuspid annular plane systolic excursion (TAPSE, mm). Electrocardiogram (ECG): synusal rhythm, conduction disturbances, atrial fibrillation (AF), right bundle branch block (RBBB), left bundle branch block (LBBB), left anterior hemiblock (LAHB), QRS duration (sec), PR duration (sec), heart rate (bpm). Exercise testing (ExTest) (according to Naughton protocol): Metabolic equivalents (METS), exercise time (min). Hemogram: red blood cell (RBC) count, hemoglobin, hematocrit, white blood cell (WBC) count (neutrophils, lymphocytes, monocytes, eosinophils, and basophils), erythrocyte sedimentation rate (ESR), platelets. Medical history: personal antecedents, cardiovascular risk factors (hypertension, dyslipidemia, tobacco and alcohol consumption, history of ischemic cardiomyopathy). Clinical evaluation: adverse events (AEs), concomitant drugs and procedures evaluation. Serology: human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV). Tumoral markers: CA125, CA19.9, carcinoembryonic antigen (CEA), and alpha-fetoprotein (AFP), Beta-hCG (BHCG), prostate-specific antigen (PSA). Ventriculography: LVEF in sinus rhythm (%), LVEF in sinus rhythm post-PVC (premature ventricular contraction) (%), Sinus end-diastolic volume (mL/m2), Sinus end-systolic volume (mL/m2), Post-PVC end-diastolic volume (mL/m2), Post-PVC end-systolic volume (mL/m2), hypokinesia in sinus rhythm, hypokinesia post-PVC, acute coronary syndrome (ACS) in sinus rhythm, ACS post-PVC, left ventricular end-diastolic pressure and heart rate (bpm). Vital signs: blood pressure (mmHg), heart rate (bpm)

References

    1. Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ res. 13 de julio de. 1998;83(1):1–14.
    1. Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167(10):989–997. doi: 10.1001/archinte.167.10.989.
    1. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI) Circulation. 2002;106(24):3009–3017. doi: 10.1161/.
    1. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29(15):1807–1818. doi: 10.1093/eurheartj/ehn220.
    1. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–705. doi: 10.1038/35070587.
    1. Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1210–1221. doi: 10.1056/NEJMoa060186.
    1. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106(15):1913–1918. doi: 10.1161/01.CIR.0000034046.87607.1C.
    1. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet Lond Engl. 2004;364(9429):141–148. doi: 10.1016/S0140-6736(04)16626-9.
    1. Choudry F, Hamshere S, Saunders N, Veerapen J, Bavnbek K, Knight C, et al. A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial. Eur Heart J. 2016;37(3):256–263. doi: 10.1093/eurheartj/ehv493.
    1. Choudhury T, Mozid A, Hamshere S, Yeo C, Pellaton C, Arnous S, et al. An exploratory randomized control study of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with ischaemic cardiomyopathy: the REGENERATE-IHD clinical trial: the REGENERATE-IHD clinical trial. Eur J Heart Fail. 2017;19(1):138–147. doi: 10.1002/ejhf.676.
    1. Fisher SA, Doree C, Mathur A, Taggart DP, Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Heart Group, editor Cochrane Database Syst Rev. 2016. 10.1002/14651858.CD007888.
    1. Chen Y, Liu W, Li W, Gao C. Autologous bone marrow mesenchymal cell transplantation improves left ventricular function in a rabbit model of dilated cardiomyopathy. Exp Mol Pathol. 2010;88(2):311–315. doi: 10.1016/j.yexmp.2009.12.002.
    1. Lin Y-C, Leu S, Sun C-K, Yen C-H, Kao Y-H, Chang L-T, et al. Early combined treatment with sildenafil and adipose-derived mesenchymal stem cells preserves heart function in rat dilated cardiomyopathy. J Transl Med. 2010;8:88. doi: 10.1186/1479-5876-8-88.
    1. Mu Y, Cao G, Zeng Q, Li Y. Transplantation of induced bone marrow mesenchymal stem cells improves the cardiac function of rabbits with dilated cardiomyopathy via upregulation of vascular endothelial growth factor and its receptors. Exp Biol Med Maywood NJ. 2011;236(9):1100–1107. doi: 10.1258/ebm.2011.011066.
    1. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005;112(8):1128–1135. doi: 10.1161/CIRCULATIONAHA.104.500447.
    1. Gho JMIH, Kummeling GJM, Koudstaal S, Jansen of Lorkeers SJ, Doevendans PA, Asselbergs FW, et al. Cell therapy, a novel remedy for dilated cardiomyopathy? A systematic review. J Card Fail. 2013;19(7):494–502. doi: 10.1016/j.cardfail.2013.05.006.
    1. Baba S, Heike T, Yoshimoto M, Umeda K, Doi H, Iwasa T, et al. Flk1+ cardiac stem/progenitor cells derived from embryonic stem cells improve cardiac function in a dilated cardiomyopathy mouse model. Cardiovasc Res. 2007;76(1):119–131. doi: 10.1016/j.cardiores.2007.05.013.
    1. Werner L, Deutsch V, Barshack I, Miller H, Keren G, George J. Transfer of endothelial progenitor cells improves myocardial performance in rats with dilated cardiomyopathy induced following experimental myocarditis. J Mol Cell Cardiol. 2005;39(4):691–697. doi: 10.1016/j.yjmcc.2005.06.015.
    1. Ishida M, Tomita S, Nakatani T, Fukuhara S, Hamamoto M, Nagaya N, et al. Bone marrow mononuclear cell transplantation had beneficial effects on doxorubicin-induced cardiomyopathy. J Heart Lung Transplant. 2004;23(4):436–445. doi: 10.1016/S1053-2498(03)00220-1.
    1. Jin B, Luo X-P, Ni H-C, Li Y, Shi H-M. Cardiac matrix remodeling following intracoronary cell transplantation in dilated cardiomyopathic rabbits. Mol Biol Rep. 2010;37(6):3037–3042. doi: 10.1007/s11033-009-9874-y.
    1. Sun C-K, Chang L-T, Sheu J-J, Chiang C-H, Lee F-Y, Wu C-J, et al. Bone marrow–derived mononuclear cell therapy alleviates left ventricular remodeling and improves heart function in rat-dilated cardiomyopathy. Crit Care Med. 2009;37(4):1197–1205. doi: 10.1097/CCM.0b013e31819c0667.
    1. Arom KV, Ruengsakulrach P, Belkin M, Tiensuwan M. Intramyocardial angiogenic cell precursors in nonischemic dilated cardiomyopathy. Asian Cardiovasc Thorac Ann. 2009;17(4):382–388. doi: 10.1177/0218492309338105.
    1. Fischer-Rasokat U, Assmus B, Seeger FH, Honold J, Leistner D, Fichtlscherer S, et al. A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail. 2009;2(5):417–423. doi: 10.1161/CIRCHEARTFAILURE.109.855023.
    1. Sant’anna RT, Kalil RAK, Pretto Neto AS, Pivatto Júnior F, Fracasso J, Sant’anna JRM, et al. Global contractility increment in nonischemic dilated cardiomyopathy after free wall-only intramyocardial injection of autologous bone marrow mononuclear cells: an insight over stem cells clinical mechanism of action. Cell Transplant. 2010;19(8):959–964. doi: 10.3727/096368910X514648.
    1. Seth S, Bhargava B, Narang R, Ray R, Mohanty S, Gulati G, et al. The ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial a long-term follow-up study. J Am Coll Cardiol. 2010;55(15):1643–1644. doi: 10.1016/j.jacc.2009.11.070.
    1. Seth S, Narang R, Bhargava B, Ray R, Mohanty S, Gulati G, et al. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial. J Am Coll Cardiol. 2006;48(11):2350–2351. doi: 10.1016/j.jacc.2006.07.057.
    1. Theiss HD, David R, Engelmann MG, Barth A, Schotten K, Naebauer M, et al. Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM) Eur Heart J. 2007;28(10):1258–1264. doi: 10.1093/eurheartj/ehm011.
    1. Vrtovec B, Poglajen G, Sever M, Lezaic L, Domanovic D, Cernelc P, et al. Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. J Card Fail. 2011;17(4):272–281. doi: 10.1016/j.cardfail.2010.11.007.
    1. Martino H, Brofman P, Greco O, Bueno R, Bodanese L, Clausell N, et al. Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study) Eur Heart J. 2015;36(42):2898–2904. doi: 10.1093/eurheartj/ehv477.
    1. Hamshere S, Arnous S, Choudhury T, Choudry F, Mozid A, Yeo C, et al. Randomized trial of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with non-ischaemic dilated cardiomyopathy: the REGENERATE-DCM clinical trial. Eur Heart J. 2015;36(44):3061–3069. doi: 10.1093/eurheartj/ehv390.
    1. Martino HF, Oliveira PS, Souza FC, Costa PC, Assunção E, Silva E, Villela R, et al. A safety and feasibility study of cell therapy in dilated cardiomyopathy. Braz J med biol res rev bras Pesqui Medicas E. Biol. 2010;43(10):989–995.
    1. Suárez de Lezo J, Herrera C, Romero M, Pan M, Suárez de Lezo J, Carmona MD, et al. Functional improvement in patients with dilated cardiomyopathy after the intracoronary infusion of autologous bone marrow mononuclear cells. Rev Espanola Cardiol (Engl Ed.) 2013;66(6):450–457. doi: 10.1016/j.recesp.2012.11.014.
    1. Baeza Garzón F, Romero M, Suárez de Lezo J, Ojeda Pineda S, Herrera C, Suárez de Lezo J. Idiopathic Dilated Cardiomyopathy Treated With Intracoronary Infusion of Autologous Bone Marrow Cells: Long-term Follow-up. Rev Esp Cardiol (Engl Ed.) 2015;68(8):726–728. doi: 10.1016/j.recesp.2015.03.015.
    1. Poglajen G, Zemljič G, Frljak S, Cerar A, Andročec V, Sever M, et al. Stem cell therapy in patients with chronic nonischemic heart failure. Stem Cells Int. 2018;2018:1–8. doi: 10.1155/2018/6487812.
    1. Lu Y, Wang Y, Lin M, Zhou J, Wang Z, Jiang M, et al. A systematic review of randomised controlled trials examining the therapeutic effects of adult bone marrow-derived stem cells for non-ischaemic dilated cardiomyopathy. Stem Cell Res Ther. 2016;7(1). 10.1186/s13287-016-0441-x.
    1. Nguyen PK, Rhee J-W, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 2016;1(7):831–841. doi: 10.1001/jamacardio.2016.2225.
    1. Cuende N, Izeta A. Clinical translation of stem cell therapies: a bridgeable gap. Cell Stem Cell. 2010;6(6):508–512. doi: 10.1016/j.stem.2010.05.005.
    1. Sheehan FH. Determinants of improved left ventricular function after thrombolytic therapy in acute myocardial infarction. J Am Coll Cardiol. 1987;9(4):937–944. doi: 10.1016/S0735-1097(87)80252-8.
    1. Garg N, Dresser T, Aggarwal K, Gupta V, Mittal MK, Alpert MA. Comparison of left ventricular ejection fraction values obtained using invasive contrast left ventriculography, two-dimensional echocardiography, and gated single-photon emission computed tomography. SAGE Open Med. 2016;4:205031211665594. doi: 10.1177/2050312116655940.
    1. Bellenger N. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21(16):1387–1396. doi: 10.1053/euhj.2000.2011.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC. Krle A-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Rev Panam Salud Publica. Pan Am J Public Health. 2015;38(6):506–514.
    1. Schulz KF, Altman DG, Moher D. CONSORT group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg Lond Engl. 2011;9(8):672–677. doi: 10.1016/j.ijsu.2011.09.004.
    1. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–547. doi: 10.1038/nrcardio.2013.105.

Source: PubMed

3
Suscribir