Fully differentiated HIV-1 specific CD8+ T effector cells are more frequently detectable in controlled than in progressive HIV-1 infection

Marylyn M Addo, Rika Draenert, Almas Rathod, Cori L Verrill, Benjamin T Davis, Rajesh T Gandhi, Gregory K Robbins, Nesli O Basgoz, David R Stone, Daniel E Cohen, Mary N Johnston, Theresa Flynn, Alysse G Wurcel, Eric S Rosenberg, Marcus Altfeld, Bruce D Walker, Marylyn M Addo, Rika Draenert, Almas Rathod, Cori L Verrill, Benjamin T Davis, Rajesh T Gandhi, Gregory K Robbins, Nesli O Basgoz, David R Stone, Daniel E Cohen, Mary N Johnston, Theresa Flynn, Alysse G Wurcel, Eric S Rosenberg, Marcus Altfeld, Bruce D Walker

Abstract

Background: CD8+ T cells impact control of viral infections by direct elimination of infected cells and secretion of a number of soluble factors. In HIV-1 infection, persistent HIV-1 specific IFN-gamma+ CD8+ T cell responses are detected in the setting of disease progression, consistent with functional impairment in vivo. Recent data suggest that impaired maturation, as defined by the lineage markers CD45RA and CCR7, may contribute to a lack of immune control by these responses.

Methodology/principal findings: We investigated the maturation phenotype of epitope-specific CD8+ T cell responses directed against HIV-1 in 42 chronically infected, untreated individuals, 22 of whom were "Controllers" (median 1140 RNA copies/ml plasma, range<50 to 2520), and 20 "progressors" of whom had advanced disease and high viral loads (median 135,500 RNA copies/ml plasma, range 12100 to >750000). Evaluation of a mean of 5 epitopes per person revealed that terminally differentiated CD8+ T cells directed against HIV-1 are more often seen in HIV-1 Controllers (16/22; 73%) compared to HIV-1 progressors (7/20; 35%)(p = 0.015), but the maturation state of epitope-specific responses within a given individual was quite variable. Maturation phenotype was independent of the HLA restriction or the specificity of a given CD8+ T cell response and individual epitopes associated with slow disease progression were not more likely to be terminally differentiated.

Conclusions/significance: These data indicate that although full maturation of epitope-specific CD8+ T cell responses is associated with viral control, the maturation status of HIV-1 specific CD8+ T cell responses within a given individual are quite heterogeneous, suggesting epitope-specific influences on CD8+ T cell function.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. T cell differentiation profile in…
Figure 1. T cell differentiation profile in bulk CD8+ T cells.
Based on the lineage markers, CD45RA and CCR7 bulk CD8+ T cells of HIV-1 Controllers (black bars) and HIV-1 progressors (hatched bars) were stratified into 4 subpopulations: effector (E), effector memory (EM), central memory (CM) and naïve (N) CD8+ T cells. Terminally differentiated (E) CD8+ T cells were of significantly higher frequency in HIV-1 Controllers (p = 0.017, Mann-Whitney), while Progressors had higher levels of CM cells (p = 0.02), indicated by asterisks (*).
Figure 2. The effector phenotype of an…
Figure 2. The effector phenotype of an individual CD8+T cell response may not be adequately reflected in a peptide pool.
Panels A and C show IFN-γ production upon stimulation with the Pol peptide pool (A) and an individual Pol peptide (C). Panels B and D are gated on the IFN-γ producing cells and show differentiation phenotype of these HIV-1 specific cells as defined by CCR7 and CD45RA isoform. The terminally differentiated response to the Pol peptide 356–374 (31.9% CCR7−/CD45RA+ of gated cells) is diluted in the response to the entire Pol peptide pool (only 8.8% gated cells are CCR7−/CD45RA+).
Figure 3. Terminally differentiated HIV-1-speficic CD8+ T…
Figure 3. Terminally differentiated HIV-1-speficic CD8+ T cells are more frequently detectable in HIV-1 Controllers compared to HIV-1 Progressors.
(A) Percentage of CD45RA+/CCR7−/CD8+ T cells for the 126 and 106 HIV-1-specific CD8+ T cell responses tested in HIV-1 Controllers and Progressors, respectively. Frequencies of effector phenotype T cell responses were significantly higher in HIV-1 Controllers (squares) compared to progressors (triangles). An HIV-1 specific CD8+ T cell response with >20% of CD45RA+/CCR7− cells was considered to be of terminally differentiated phenotype (dotted line) . (B) More HIV-1 Controllers had at least one terminally differentiated HIV-1 specific T cell response compared to HIV-1 Progressors (p = 0.015, Fisher's exact). (C) Of the CD8+ T cell responses against HIV-1 tested per individual a higher percentage of terminally differentiated responses were detectable in HIV-1 Controllers (p = 0.007, Mann Whitney). For 3 Controllers all investigated responses were of the terminally differentiated phenotype, while five Controllers had none.
Figure 4. Maturation phenotype of HIV-1 specific…
Figure 4. Maturation phenotype of HIV-1 specific CD8+ T cells by HLA type and epitope specificity.
Panel A shows the percentage of CD45RA+/CCR7− CD8+ T cells of 46 HLA-A2, -A3, -B14, -B27 and -B57-restricted epitopes tested in the study cohort. Panel B depicts the percentage of CD45RA+/CCR7− CD8+ T cells specific for six specific HIV-1 epitopes tested (restricting HLA allele and peptide sequence are shown). Data reflective of a total of 21 study subjects, who had responses to the specific HLA-matched optimal epitopes tested (14 Controllers and 5 Progressors).

References

    1. Letvin NL, Walker BD. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat Med. 2003;9:861–866.
    1. Goulder PJ, Watkins DI. HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol. 2004;4:630–640.
    1. Draenert R, Goebel FD. What's new in HIV/AIDS. Protective immunity in HIV infection: where do we stand? Infection. 2004;32:250–252.
    1. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68:4650–4655.
    1. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994;68:6103–6110.
    1. Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med. 1999;189:991–998.
    1. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999;283:857–860.
    1. Goulder PJ, Brander C, Tang Y, Tremblay C, Colbert RA, et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature. 2001;412:334–338.
    1. Allen TM, O'Connor DH, Jing P, Dzuris JL, Mothe BR, et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature. 2000;407:386–390.
    1. Borrow P, Lewicki H, Wei X, Horwitz MS, Peffer N, et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med. 1997;3:205–211.
    1. Barouch DH, Kunstman J, Kuroda MJ, Schmitz JE, Santra S, et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature. 2002;415:335–339.
    1. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;in press
    1. Moore CB, John M, James IR, Christiansen FT, Witt CS, et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science. 2002;296:1439–1443.
    1. Draenert R, Verrill CL, Tang Y, Allen TM, Wurcel AG, et al. Persistent recognition of autologous virus by high-avidity CD8 T cells in chronic, progressive human immunodeficiency virus type 1 infection. J Virol. 2004;78:630–641.
    1. Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RE, et al. Comprehensive analysis of Human Immunodeficiency Virus type 1 (HIV-1)-specific T cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol. 2003;77:2081–2092.
    1. Betts MR, Ambrozak DR, Douek DC, Bonhoeffer S, Brenchley JM, et al. Analysis of Total Human Immunodeficiency Virus (HIV)-Specific CD4(+) and CD8(+) T-Cell Responses: Relationship to Viral Load in Untreated HIV Infection. J Virol. 2001;75:11983–11991.
    1. Frahm N, Korber BT, Adams CM, Szinger JJ, Draenert R, et al. Consistent cytotoxic-T-lymphocyte targeting of immunodominant regions in human immunodeficiency virus across multiple ethnicities. J Virol. 2004;78:2187–2200.
    1. Appay V. HIV-1 specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med. 2000;192:63–65.
    1. Chen G, Shankar P, Lange C, Valdez H, Skolnik PR, et al. CD8 T cells specific for human immunodeficiency virus, Epstein-Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection. Blood. 2001;98:156–164.
    1. Champagne P, Ogg GS, King AS, Knabenhans C, Ellefsen K, et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature. 2001;410:106–111.
    1. Frahm N, Goulder PJ, C B. Total Assessment of HIV-Specific CTL Responses: Epitope Clustering, Processing Preferences, and the Impact of HIV Sequence Heterogeneity. HIV Molecular Immunology. 2002;2002:I-1–I-22.
    1. Addo MM, Altfeld M, Rosenberg ES, Eldridge RL, Philips MN, et al. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc Natl Acad Sci U S A. 2001;98:1781–1786.
    1. Pitcher CJ, Quittner C, Peterson DM, Connors M, Koup RA, et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat Med. 1999;5:518–525.
    1. Goulder PJ, Addo MM, Altfeld MA, Rosenberg ES, Tang Y, et al. Rapid definition of five novel HLA-A*3002-restricted human immunodeficiency virus-specific cytotoxic T-lymphocyte epitopes by elispot and intracellular cytokine staining assays. J Virol. 2001;75:1339–1347.
    1. Hess C, Altfeld M, Thomas SY, Addo MM, Rosenberg ES, et al. HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet. 2004;363:863–866.
    1. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol. 2002;3:1061–1068.
    1. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–712.
    1. Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med. 1997;3:212–217.
    1. Kelleher AD, Long C, Holmes EC, Allen RL, Wilson J, et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J Exp Med. 2001;193:375–386.
    1. Feeney ME, Tang Y, Roosevelt KA, Leslie AJ, McIntosh K, et al. Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J Virol. 2004;78:8927–8930.
    1. Lichterfeld M, Yu XG, Waring MT, Mui SK, Johnston MN, et al. HIV-1-specific cytotoxicity is preferentially mediated by a subset of CD8(+) T cells producing both interferon-gamma and tumor necrosis factor-alpha. Blood. 2004;104:487–494.
    1. van Baarle D, Kostense S, van Oers MH, Hamann D, Miedema F. Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol. 2002;23:586–591.
    1. Kostense S, Ogg GS, Manting EH, Gillespie G, Joling J, et al. High viral burden in the presence of major HIV-specific CD8(+) T cell expansions: evidence for impaired CTL effector function. Eur J Immunol. 2001;31:677–686.
    1. Migueles SA, Laborico AC, Imamichi H, Shupert WL, Royce C, et al. The differential ability of HLA B*5701+ long-term nonprogressors and progressors to restrict human immunodeficiency virus replication is not caused by loss of recognition of autologous viral gag sequences. J Virol. 2003;77:6889–6898.

Source: PubMed

3
Suscribir