Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient

Steven A Yukl, Eli Boritz, Michael Busch, Christopher Bentsen, Tae-Wook Chun, Daniel Douek, Evelyn Eisele, Ashley Haase, Ya-Chi Ho, Gero Hütter, J Shawn Justement, Sheila Keating, Tzong-Hae Lee, Peilin Li, Danielle Murray, Sarah Palmer, Christopher Pilcher, Satish Pillai, Richard W Price, Meghan Rothenberger, Timothy Schacker, Janet Siliciano, Robert Siliciano, Elizabeth Sinclair, Matt Strain, Joseph Wong, Douglas Richman, Steven G Deeks, Steven A Yukl, Eli Boritz, Michael Busch, Christopher Bentsen, Tae-Wook Chun, Daniel Douek, Evelyn Eisele, Ashley Haase, Ya-Chi Ho, Gero Hütter, J Shawn Justement, Sheila Keating, Tzong-Hae Lee, Peilin Li, Danielle Murray, Sarah Palmer, Christopher Pilcher, Satish Pillai, Richard W Price, Meghan Rothenberger, Timothy Schacker, Janet Siliciano, Robert Siliciano, Elizabeth Sinclair, Matt Strain, Joseph Wong, Douglas Richman, Steven G Deeks

Abstract

There is intense interest in developing curative interventions for HIV. How such a cure will be quantified and defined is not known. We applied a series of measurements of HIV persistence to the study of an HIV-infected adult who has exhibited evidence of cure after allogeneic hematopoietic stem cell transplant from a homozygous CCR5Δ32 donor. Samples from blood, spinal fluid, lymph node, and gut were analyzed in multiple laboratories using different approaches. No HIV DNA or RNA was detected in peripheral blood mononuclear cells (PBMC), spinal fluid, lymph node, or terminal ileum, and no replication-competent virus could be cultured from PBMCs. However, HIV RNA was detected in plasma (2 laboratories) and HIV DNA was detected in the rectum (1 laboratory) at levels considerably lower than those expected in ART-suppressed patients. It was not possible to obtain sequence data from plasma or gut, while an X4 sequence from PBMC did not match the pre-transplant sequence. HIV antibody levels were readily detectable but declined over time; T cell responses were largely absent. The occasional, low-level PCR signals raise the possibility that some HIV nucleic acid might persist, although they could also be false positives. Since HIV levels in well-treated individuals are near the limits of detection of current assays, more sensitive assays need to be developed and validated. The absence of recrudescent HIV replication and waning HIV-specific immune responses five years after withdrawal of treatment provide proof of a clinical cure.

Conflict of interest statement

Michael Busch has consulted for Gen-Probe (now owned by Hologic), which provided support for some of the virologic measurements performed in this study. Christopher Bentsen is currently employed by Bio-Rad Laboratories, Inc. and received salary, benefits and stock. He oversaw the testing of samples in this paper with FDA approved tests from Bio-Rad. These relationships do not alter our adherence to all PLoS Pathogens policies on sharing data and materials.

Figures

Figure 1. Timeline for clinical treatments and…
Figure 1. Timeline for clinical treatments and study samples.
Figure 2. Fluorescence-activated cell sorting (FACS) strategies…
Figure 2. Fluorescence-activated cell sorting (FACS) strategies for PBMC samples (A-G) and GI tract samples (H-M; ileum shown as example).
For PBMC, all cells were included (panel A), doublets excluded (panel B), and residual non-viable cells excluded by LIVE/DEAD violet cell staining ("Viab dump," panel C). Low-frequency CCR5+ events were then collected in one sorting tube (inside box gate, panel D). Of the remaining, CCR5- events (outside box gate, panel D), CD3+ events negative for CD14 and CD11c were included for further gating (inside polygon gate, panel E), with remaining events collected in a second sorting tube (outside polygon gate, panel E). CCR5-CD3+ events negative for CD14 and CD11c that were also CD8- (panel F) and T cell receptor-γδ-, CD20-, and CD56- ("Lin dump," panel G) were collected in a third sorting tube as presumptive CD4+ T cells. Remaining CD3+ events that were either CD8+ or Lin dump+ were combined in a fourth sorting tube. For ileum and rectum, all cells were included (panel H) and then doublets excluded (panel I). Viable CD45+ events were included for further gating (inside polygon gate, panel J), with all events outside this gate collected in one sorting tube as non-hematopoietic cells. CD3+ events negative for CD14 and CD11c were included for further gating (inside polygon gate, panel K), with remaining events collected in a second sorting tube (outside polygon gate, panel K). CD3+ events negative for CD14 and CD11c that were also CD8- (panel L) and T cell receptor-γδ-, CD20-, and CD56- ("Lin dump," panel M) were collected in a third sorting tube as presumptive CD4+ T cells. Remaining CD3+ events that were either CD8+ or Lin dump+ were combined in a fourth sorting tube. Numbers in upper-right corners of flow plots indicate the percentages of events on plots falling inside gates shown.
Figure 3. HIV-specific antibodies.
Figure 3. HIV-specific antibodies.
Blood from four time points was tested for HIV specific antibody levels using the HIV-1/2 VITROS assay (3A), a detuned version of the HIV-1 VITROS assay (3B), and the Limiting Antigen avidity assay (3C). The y-axis shows the relative level of total HIV-specific antibody, as expressed as the signal to cutoff ratio (3A–B) or normalized optical density, ODn (3C). The x axis represents months since transplant. In Figure 3A, the dotted line represents the diagnostic HIV antibody assay cut-off level used to classify individuals as HIV-positive or HIV-negative. For purposes of comparison, HIV antibody responses were also measured in HIV-uninfected adults, untreated HIV-infected adults, and ART-treated chronically-infected adults using the detuned HIV-1 VITROS assay (Figure 3D). The bars in the scatterplots represent the median and interquartile ranges of distributions of seroreactivity for each group. Finally, samples from the Berlin Patient were tested for antibodies to other infectious diseases (3E). Tests included antibodies to CMV (strong positive, above the limit of detection), EBV, measles, and hepatitis B (all within the range of detection) as well as VZV, mumps, rubella, and toxoplasmosis (all negative, below the limit of detection). Only the results within detectable range of the assay are shown. S/CO = signal/cutoff ratio; ODn = normalized optical density; AI = antibody index.
Figure 4. HIV Gag-specific cell mediated immune…
Figure 4. HIV Gag-specific cell mediated immune responses.
PBMC were obtained from the Berlin Patient (solid red circles), HIV-uninfected adults (open black circles in 4A–B), chronically HIV-infected adults on long term ART with undetectable plasma viral loads (open black circles, 4C–D), and elite controllers (open black circles, 4E–F). PBMC were stimulated with CMV pp65 or HIV Gag peptide pools, and flow cytometry was used to measure the percentage of CD4+T cells (4A, 4C, 4E) or CD8+T cells (4B, 4D, 4F) with intracellular staining for interferon-γ, tumor necrosis factor-α, IL-2, or CD107. The y axis shows the percent of T cells that express each cytokine in response to HIV Gag. The solid red circle indicates the Berlin Patient, while open black circles indicate individuals from comparator groups.

References

    1. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, et al. (2009) The challenge of finding a cure for HIV infection. Science 323: 1304–1307.
    1. Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, et al. (2012) Towards an HIV cure: a global scientific strategy. Nature reviews Immunology 12: 607–614.
    1. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, et al. (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. The New England journal of medicine 360: 692–698.
    1. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, et al. (2011) Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 117: 2791–2799.
    1. Symons J, Deeks S, Hutter G, Wensing A, Martin J, et al... (2012) The cure of the ‘Berlin patient’: why did pre-existing X4-variants not emergence after allogeneic CCR5-Δ32 SCT?. 19th International AIDS Conference. Washington, D.C.
    1. Alexaki A, Liu Y, Wigdahl B (2008) Cellular reservoirs of HIV-1 and their role in viral persistence. Current HIV research 6: 388–400.
    1. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, et al. (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proceedings of the National Academy of Sciences of the United States of America 105: 3879–3884.
    1. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188.
    1. Finzi D, Hermankova M, Pierson T, Carruth L, Buck C, et al. (1997) Identification of a reservoir for HIV in patients on highly active antiretroviral therapy. Science 278: 1295–1300.
    1. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, et al. (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278: 1291–1295.
    1. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, et al. (1999) Latent infection of CD4 Tcells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine 5: 512–517.
    1. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, et al. (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9: 727–728.
    1. Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, et al. (1996) Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274: 985–989.
    1. Wong JK, Gunthard HF, Havlir DV, Zhang ZQ, Haase AT, et al. (1997) Reduction of HIV-1 in blood and lymph nodes following potent antiretroviral therapy and the virologic correlates of treatment failure. Proc Natl Acad Sci U S A 94: 12574–12579.
    1. Kuster H, Opravil M, Ott P, Schlaepfer E, Fischer M, et al. (2000) Treatment-induced decline of human immunodeficiency virus-1 p24 and HIV-1 RNA in lymphoid tissue of patients with early human immunodeficiency virus-1 infection. Am J Pathol 156: 1973–1986.
    1. Poles MA, Boscardin WJ, Elliott J, Taing P, Fuerst MM, et al. (2006) Lack of decay of HIV-1 in gut-associated lymphoid tissue reservoirs in maximally suppressed individuals. J Acquir Immune Defic Syndr 43: 65–68.
    1. Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, et al. (2008) Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. The Journal of infectious diseases 197: 714–720.
    1. Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, et al. Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis 202: 1553–1561.
    1. Chun TW, Murray D, Justement JS, Hallahan CW, Moir S, et al. (2011) Relationship between residual plasma viremia and the size of HIV proviral DNA reservoirs in infected individuals receiving effective antiretroviral therapy. The Journal of infectious diseases 204: 135–138.
    1. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, et al. (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41: 4531–4536.
    1. Busch MP, Glynn SA, Wright DJ, Hirschkorn D, Laycock ME, et al. (2005) Relative sensitivities of licensed nucleic acid amplification tests for detection of viremia in early human immunodeficiency virus and hepatitis C virus infection. Transfusion 45: 1853–1863.
    1. Hatano H, Delwart EL, Norris PJ, Lee TH, Dunn-Williams J, et al. (2009) Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy. J Virol 83: 329–335.
    1. Yukl SA, Li P, Fujimoto K, Lampiris H, Lu CM, et al. (2011) Modification of the Abbott RealTime assay for detection of HIV-1 plasma RNA viral loads less than one copy per milliliter. Journal of virological methods 175: 261–265.
    1. Yukl S SE, Harvill K, Gilman L, Hoh R, Hunt PW, et al... (2012) Comparison of GALT HIV RNA and DNA Levels in HIV-Infected controllers, non-controllers, and HAART-suppressed individuals; 2012 March 5–8; Seattle, Washington.
    1. Durand CM, Ghiaur G, Siliciano JD, Rabi SA, Eisele EE, et al. (2012) HIV-1 DNA is detected in bone marrow populations containing CD4+ T cells but is not found in purified CD34+ hematopoietic progenitor cells in most patients on antiretroviral therapy. The Journal of infectious diseases 205: 1014–1018.
    1. Strain MC, Lada SF, Luong T, Rought SE, Gianella S, et al. (2013) Highly Precise Measurement of HIV DNA by Droplet Digital PCR. PloS one 8: e55943.
    1. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JM, et al. (1997) Presence of an inducible HIV latent reservoir during highly active antiretroviral therapy. PNAS 94: 13193–13197.
    1. Siliciano JD, Siliciano RF (2005) Enhanced culture assay for detection and quantitation of latently infected, resting CD4+ T-cells carrying replication-competent virus in HIV-1-infected individuals. Methods in molecular biology 304: 3–15.
    1. Keating SM, Hanson D, Lebedeva M, Laeyendecker O, Ali-Napo NL, et al. (2012) Lower-sensitivity and avidity modifications of the vitros anti-HIV 1+2 assay for detection of recent HIV infections and incidence estimation. Journal of clinical microbiology 50: 3968–3976.
    1. Duong YT, Qiu M, De AK, Jackson K, Dobbs T, et al. (2012) Detection of recent HIV-1 infection using a new limiting-antigen avidity assay: potential for HIV-1 incidence estimates and avidity maturation studies. PLoS ONE 7: e33328.
    1. Ndhlovu LC, Sinclair E, Epling L, Tan QX, Ho T, et al. (2010) IL-2 immunotherapy to recently HIV-1 infected adults maintains the numbers of IL-17 expressing CD4+ T (T(H)17) cells in the periphery. Journal of clinical immunology 30: 681–692.
    1. Fischer M, Joos B, Niederost B, Kaiser P, Hafner R, et al. (2008) Biphasic decay kinetics suggest progressive slowing in turnover of latently HIV-1 infected cells during antiretroviral therapy. Retrovirology 5: 107.
    1. Li Y, Kappes JC, Conway JA, Price RW, Shaw GM, et al. (1991) Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes. J Virol 65: 3973–3985.
    1. Sanchez G, Xu X, Chermann JC, Hirsch I (1997) Accumulation of defective viral genomes in peripheral blood mononuclear cells fo HIV infected individuals. Journal of Virology 71: 2233–2240.
    1. Piatak M Jr, Saag MS, Yang LC, Clark SJ, Kappes JC, et al. (1993) High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259: 1749–1754.
    1. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS pathogens 9: e1003174.
    1. Luzuriaga K, McManus M, Catalina M, Mayack S, Sharkey M, et al. (2000) Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. Journal of virology 74: 6984–6991.
    1. Binley JM, Trkola A, Ketas T, Schiller D, Clas B, et al. (2000) The effect of highly active antiretroviral therapy on binding and neutralizing antibody responses to human immunodeficiency virus type 1 infection. The Journal of infectious diseases 182: 945–949.
    1. Hare CB, Pappalardo BL, Busch MP, Karlsson AC, Phelps BH, et al. (2006) Seroreversion in subjects receiving antiretroviral therapy during acute/early HIV infection. Clin Infect Dis 42: 700–708.
    1. Ljungman P, Wiklund-Hammarsten M, Duraj V, Hammarstrom L, Lonnqvist B, et al. (1990) Response to tetanus toxoid immunization after allogeneic bone marrow transplantation. The Journal of infectious diseases 162: 496–500.
    1. Keele BF, Derdeyn CA (2009) Genetic and antigenic features of the transmitted virus. Current opinion in HIV and AIDS 4: 352–357.
    1. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, et al. (2009) Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. The Journal of experimental medicine 206: 1273–1289.
    1. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273: 1856–1862.
    1. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, et al. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367–377.
    1. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, et al. (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382: 722–725.
    1. Biti R, Ffrench R, Young J, Bennetts B, Stewart G, et al. (1997) HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nature medicine 3: 252–253.
    1. Theodorou I, Meyer L, Magierowska M, Katlama C, Rouzioux C (1997) HIV-1 infection in an individual homozygous for CCR5 delta 32. Seroco Study Group. Lancet 349: 1219–1220.
    1. O'Brien TR, Winkler C, Dean M, Nelson JA, Carrington M, et al. (1997) HIV-1 infection in a man homozygous for CCR5 delta 32. Lancet 349: 1219.
    1. Ballana E, Riveira-Munoz E, Pou C, Bach V, Parera M, et al. (2012) HLA class I protective alleles in an HIV-1-infected subject homozygous for CCR5-Delta32/Delta32. Immunobiology 218: 543–7.
    1. Blanco J, Bosch B, Fernandez-Figueras MT, Barretina J, Clotet B, et al. (2004) High level of coreceptor-independent HIV transfer induced by contacts between primary CD4 T cells. The Journal of biological chemistry 279: 51305–51314.
    1. Gorry PR, Dunfee RL, Mefford ME, Kunstman K, Morgan T, et al. (2007) Changes in the V3 region of gp120 contribute to unusually broad coreceptor usage of an HIV-1 isolate from a CCR5 Delta32 heterozygote. Virology 362: 163–178.
    1. Schmitz J, van Lunzen J, Tenner-Racz K, Grossschupff G, Racz P, et al. (1994) Follicular dendritic cells retain HIV-1 particles on their plasma membrane, but are not productively infected in asymptomatic patients with follicular hyperplasia. Journal of immunology 153: 1352–1359.
    1. Smith BA, Gartner S, Liu Y, Perelson AS, Stilianakis NI, et al. (2001) Persistence of infectious HIV on follicular dendritic cells. Journal of immunology 166: 690–696.
    1. Cavert W, Notermans DW, Staskus K, Wietgrefe S, Zupancic M, et al. (1997) Kinetics of Response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276: 960–964.
    1. Mendoza D, Johnson SA, Peterson BA, Natarajan V, Salgado M, et al. (2012) Comprehensive analysis of unique cases with extraordinary control over HIV replication. Blood 119: 4645–4655.
    1. Kumar AM, Borodowsky I, Fernandez B, Gonzalez L, Kumar M (2007) Human immunodeficiency virus type 1 RNA Levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction. J Neurovirol 13: 210–224.

Source: PubMed

3
Suscribir