Effect of tolvaptan on renal water and sodium excretion and blood pressure during nitric oxide inhibition: a dose-response study in healthy subjects

Safa Al Therwani, Jeppe Bakkestrøm Rosenbæk, Frank Holden Mose, Jesper Nørgaard Bech, Erling Bjerregaard Pedersen, Safa Al Therwani, Jeppe Bakkestrøm Rosenbæk, Frank Holden Mose, Jesper Nørgaard Bech, Erling Bjerregaard Pedersen

Abstract

Background: Tolvaptan is a selective vasopressin receptor antagonist. Nitric Oxide (NO) promotes renal water and sodium excretion, but the effect is unknown in the nephron's principal cells. In a dose-response study, we measured the effect of tolvaptan on renal handling of water and sodium and systemic hemodynamics, during baseline and NO-inhibition with L-NMMA (L-NG-monomethyl-arginine).

Methods: In a randomized, placebo-controlled, double blind, cross over study, 15 healthy subjects received tolvaptan 15, 30 and 45 mg or placebo. L-NMMA was given as a bolus followed by continuous infusion during 60 min. We measured urine output (UO), free water clearance (CH2O), fractional excretion of sodium (FENa), urinary aquaporin-2 channels (u-AQP2) and epithelial sodium channels (u-ENaCγ), plasma vasopressin (p-AVP) and central blood pressure (cBP).

Results: During baseline, FENa was unchanged. Tolvaptan decreased u-ENaCγ dose-dependently and increased p-AVP threefold, whereas u-AQP2 was unchanged. During tolvaptan with NO-inhibition, UO and CH2O decreased dose-dependently. FENa decreased dose-independently and u-ENaCγ remained unchanged. Central BP increased equally after all treatments.

Conclusions: During baseline, fractional excretion of sodium was unchanged. During tolvaptan with NO-inhibition, renal water excretion was reduced dose dependently, and renal sodium excretion was reduced unrelated to the dose, partly via an AVP dependent mechanism. Thus, tolvaptan antagonized the reduction in renal water and sodium excretion during NO-inhibition. Most likely, the lack of decrease in AQP2 excretion by tolvaptan could be attributed to a counteracting effect of the high level of p-AVP.

Trial registration: Clinical Trial no: NCT02078973 . Registered 1 March 2014.

Keywords: AQP2; Blood pressure; ENaC; Nitric oxide; Tolvaptan; Vasoactive hormones.

Figures

Fig. 1
Fig. 1
Effect of tolvaptan 15, 30 and 45 mg at baseline, during and after NO-inhibition on GFR (51 Cr-EDTA-clearance) (a), UO (b), CH2O (c) and u-AQP2 (d). Data are presented as mean ± SEM. General linear model (GLM) with repeated measures was performed for comparison within and between groups. One-way ANOVA (*) was used to test differences between tolvaptan 15, 30 and 45 mg vs placebo. Paired t-test (α/β/γ) was used for comparison of infusion period (90–150 min) vs baseline period (0–90 min) and post infusion period (150–210 min) vs baseline period.p<; 0.05; ††p < 0.001; */†††p < 0.0001. Paired t-test was used for comparison between the three tolvaptan doses at baseline period (0–90 min), L-NMMA infusion period (90–150 min) and post infusion period (150–210 min); the significance levels are listed under the result section
Fig. 2
Fig. 2
Effect of tolvaptan 15, 30 and 45 mg at baseline, during and after NO-inhibition on FENa (e) and u-ENaCγ (f). Data are presented as mean ± SEM. General linear model (GLM) with repeated measures was performed for comparison within and between groups. One-way ANOVA (*) was used to test differences between tolvaptan 15, 30 and 45 mg vs placebo. Paired t-test (α/β/γ) was used for comparison of infusion period (90–150 min) vs baseline period (0–90 min) and post infusion period (150–210 min) vs baseline period. p<; 0.05; ††p < 0.001; */†††p < 0.0001. Paired t-test was used for comparison between the three tolvaptan doses at baseline period (0–90 min), L-NMMA infusion period (90–150 min) and post infusion period (150–210 min); the significance levels are listed under the result section
Fig. 3
Fig. 3
Effect of tolvaptan 15, 30 and 45 mg on p-AVP at baseline, during and after NO-inhibition. Data are depicted as mean ± SEM. Friedman test was used for comparison between treatment groups prior to L-NMMA infusion, at the end of L-NMMA infusion and 1 h after the end of L-NMMA infusion

References

    1. Ali F, Guglin M, Vaitkevicius P, Ghali JK. Therapeutic potential of vasopressin receptor antagonists. Drugs. 2007;67:847–58. doi: 10.2165/00003495-200767060-00002.
    1. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. NEnglJMed. 2006;355:2099–112. doi: 10.1056/NEJMoa065181.
    1. Verbalis JG, Goldsmith SR, Greenberg A, Schrier RW, Sterns RH. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am J Med. 2007;120:S1–21. doi: 10.1016/j.amjmed.2007.09.001.
    1. Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC) Pflugers Arch. 2009;458:111–35. doi: 10.1007/s00424-009-0656-0.
    1. Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol. 1999;10:647–63.
    1. Perucca J, Bichet DG, Bardoux P, Bouby N, Bankir L. Sodium excretion in response to vasopressin and selective vasopressin receptor antagonists. J Am Soc Nephrol. 2008;19(9):1721–31. doi: 10.1681/ASN.2008010021.
    1. Wang W, Li C, Nejsum LN, Li H, Kim SW, Kwon TH, Jonassen TE, Knepper MA, Thomsen K, Frokiaer J, Nielsen S. Biphasic effects of ANP infusion in conscious, euvolumic rats: roles of AQP2 and ENaC trafficking. Am J Physiol Renal Physiol. 2006;290:F530–41. doi: 10.1152/ajprenal.00070.2005.
    1. Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest. 2000;106:1115–26. doi: 10.1172/JCI9594.
    1. Klokkers J, Langehanenberg P, Kemper B, Kosmeier S, von Bally G, Riethmuller C, Wunder F, Sindic A, Pavenstadt H, Schlatter E, Edemir B. Atrial natriuretic peptide and nitric oxide signaling antagonizes vasopressin-mediated water permeability in inner medullary collecting duct cells. AmJPhysiol Renal Physiol. 2009;297:F693–703. doi: 10.1152/ajprenal.00136.2009.
    1. Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. Am J Physiol. 1998;275:F849–62.
    1. Ortiz PA, Garvin JL. Role of nitric oxide in the regulation of nephron transport. Am J Physiol Renal Physiol. 2002;282:F777–84. doi: 10.1152/ajprenal.00334.2001.
    1. Al TS, Mose FH, Jensen JM, Bech JN, Pedersen EB. Effect of vasopressin antagonism on renal handling of sodium and water and central and brachial blood pressure during inhibition of the nitric oxide system in healthy subjects. BMC Nephrol. 2014;15:100. doi: 10.1186/1471-2369-15-100.
    1. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2011.
    1. Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol. 2008;294:F1–9. doi: 10.1152/ajprenal.00424.2007.
    1. Larsen T, Mose FH, Bech JN, Pedersen EB. Effect of nitric oxide inhibition on blood pressure and renal sodium handling: a dose-response study in healthy man. Clin Exp Hypertens. 2012;34(8):567–74. doi: 10.3109/10641963.2012.681727.
    1. Wu G, Meininger CJ. Nitric oxide and vascular insulin resistance. Biofactors. 2009;35:21–7. doi: 10.1002/biof.3.
    1. Gansevoort RT, Arici M, Benzing T, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTAWorking Groups on Inherited Kidney Disorders and European Renal Best Practice. Nephrol Dial Transplant. 2016;31:337–48. doi: 10.1093/ndt/gfv456.
    1. Higashihara E, Torres VE, Chapman AB, Grantham JJ, Bae K, Watnick TJ, Horie S, Nutahara K, Ouyang J, Krasa HB, Czerwiec FS. Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience. Clin J Am Soc Nephrol. 2011;6:2499–507. doi: 10.2215/CJN.03530411.
    1. Irazabal MV, Torres VE, Hogan MC, Glockner J, King BF, Ofstie TG, Krasa HB, Ouyang J, Czerwiec FS. Short-term effects of tolvaptan on renal function and volume in patients with autosomal dominant polycystic kidney disease. Kidney Int. 2011;80:295–301. doi: 10.1038/ki.2011.119.
    1. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang J, Czerwiec FS. Tolvaptan in patients with autosomal dominant polycystic kidney disease. NEnglJMed. 2012;367:2407–18. doi: 10.1056/NEJMoa1205511.
    1. Torres VE, Meijer E, Bae KT, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, Perrone RD, Krasa HB, Ouyang JJ, Czerwiec FS. Rationale and design of the TEMPO (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) 3–4 Study. Am J Kidney Dis. 2011;57:692–9. doi: 10.1053/j.ajkd.2010.11.029.
    1. Berl T, Quittnat-Pelletier F, Verbalis JG, Schrier RW, Bichet DG, Ouyang J, Czerwiec FS. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705–12. doi: 10.1681/ASN.2009080857.
    1. Dasta JF, Chiong JR, Christian R, Friend K, Lingohr-Smith M, Lin J, Cassidy IB. Update on tolvaptan for the treatment of hyponatremia. Expert Rev Pharmacoecon Outcomes Res. 2012;12:399–410. doi: 10.1586/erp.12.30.
    1. Elhassan EA, Schrier RW. Hyponatremia: diagnosis, complications, and management including V2 receptor antagonists. Curr Opin Nephrol Hypertens. 2011;20:161–8. doi: 10.1097/MNH.0b013e3283436f14.
    1. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. NEnglJMed. 2007;356:2064–72. doi: 10.1056/NEJMcp066837.
    1. Robertson GL. Vaptans for the treatment of hyponatremia. Nat Rev Endocrinol. 2011;7:151–61. doi: 10.1038/nrendo.2010.229.
    1. Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, Decaux G, Fenske W, Hoorn EJ, Ichai C, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant. 2014;29(Suppl 2):i1–39. doi: 10.1093/ndt/gfu040.
    1. Graffe CC, Bech JN, Pedersen EB. Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. AM J Physiol Renal Physiol. 2012;302(2):F264–75. doi: 10.1152/ajprenal.00442.2010.
    1. Matthesen SK, Larsen T, Lauridsen TG, Vase H, Gjorup PH, Nykjaer KM, Nielsen S, Pedersen EB. Effect of amiloride and spironolactone on renal tubular function, ambulatory blood pressure, and pulse wave velocity in healthy participants in a double-blinded, randomized, placebo-controlled, crossover trial. Clin Exp Hypertens. 2012;34(8):588–600. doi: 10.3109/10641963.2012.681730.
    1. Pedersen RS, Bentzen H, Bech JN, Pedersen EB. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am J Physiol Renal Physiol. 2001;280(5):F860–7.
    1. Hager H, Kwon TH, Vinnikova AK, Masilamani S, Brooks HL, Frøkiaer J, Knepper MA, Nielsen S. Immunocytochemical and immunoelectron microscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney. Am J physiol Renal Physiol. 2001;280(6):F1093–106.
    1. Pedersen EB, Danielsen H, Spencer ES. Effect of indapamide on renal plasma flow, glomerular filtration rate and arginine vasopressin in plasma in essential hypertension. Eur J Clin Pharmacol. 1984;26(5):543–7. doi: 10.1007/BF00543482.
    1. Pedersen EB, Eiskjaer H, Madsen B, Danielsen H, Egeblad M, Nielsen CB. Effect of captopril on renal extraction of renin, angiotensin II, atrial natriuretic peptide and vasopressin, and renal vein renin ratio in patients with arterial hypertension and unilateral renal artery disease. Nephrol Dial Transplant. 1993;8(10):1064–70.
    1. Shoaf SE, Bricmont P, Mallikaarjun S. Absolute bioavailability of tolvaptan and determination of minimally effective concentrations in healthy subjects. Int J Clin Pharmacol Ther. 2012;50:150–6. doi: 10.5414/CP201621.
    1. Shoaf SE, Wang Z, Bricmont P, Mallikaarjun S. Pharmacokinetics, pharmacodynamics, and safety of tolvaptan, a nonpeptide AVP antagonist, during ascending single-dose studies in healthy subjects. J Clin Pharmacol. 2007;47:1498–507. doi: 10.1177/0091270007307877.
    1. Bhatt PR, McNeely EB, Lin TE, Adams KF, Patterson JH. Review of tolvaptan’s pharmacokinetic and pharmacodynamic properties and drug interactions. J Clin Med. 2014;3(4):1276–90. doi: 10.3390/jcm3041276.
    1. Blanchard A, Frank M, Wuerzner G, Peyrard S, Bankir L, Jeunemaitre X, Azizi M. Antinatriuretic effect of vasopressin in humans is amiloride sensitive, thus ENaC dependent. Clin J Am Soc Nephrol. 2011;6(4):753–9. doi: 10.2215/CJN.06540810.
    1. Lauridsen TG, Vase H, Bech JN, Nielsen S, Pedersen EB. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney. Eur J Endocrinol. 2010;162:961–9. doi: 10.1530/EJE-10-0030.
    1. Matthesen SK, Larsen T, Vase H, Lauridsen TG, Pedersen EB. Effect of potassium supplementation on renal tubular function, ambulatory blood pressure and pulse wave velocity in healthy humans. Scand J Clin Lab Invest. 2012;72(1):78–86. doi: 10.3109/00365513.2011.635216.

Source: PubMed

3
Suscribir