Heart Rate Variability Triangular Index as a Predictor of Cardiovascular Mortality in Patients With Atrial Fibrillation

Peter Hämmerle, Christian Eick, Steffen Blum, Vincent Schlageter, Axel Bauer, Konstantinos D Rizas, Ceylan Eken, Michael Coslovsky, Stefanie Aeschbacher, Philipp Krisai, Pascal Meyre, Jean-Marc Vesin, Nicolas Rodondi, Elisavet Moutzouri, Jürg Beer, Giorgio Moschovitis, Richard Kobza, Marcello Di Valentino, Valentina D A Corino, Rita Laureanti, Luca Mainardi, Leo H Bonati, Christian Sticherling, David Conen, Stefan Osswald, Michael Kühne, Christine S Zuern, Swiss‐AF Study Investigators, Peter Hämmerle, Christian Eick, Steffen Blum, Vincent Schlageter, Axel Bauer, Konstantinos D Rizas, Ceylan Eken, Michael Coslovsky, Stefanie Aeschbacher, Philipp Krisai, Pascal Meyre, Jean-Marc Vesin, Nicolas Rodondi, Elisavet Moutzouri, Jürg Beer, Giorgio Moschovitis, Richard Kobza, Marcello Di Valentino, Valentina D A Corino, Rita Laureanti, Luca Mainardi, Leo H Bonati, Christian Sticherling, David Conen, Stefan Osswald, Michael Kühne, Christine S Zuern, Swiss‐AF Study Investigators

Abstract

Background Impaired heart rate variability (HRV) is associated with increased mortality in sinus rhythm. However, HRV has not been systematically assessed in patients with atrial fibrillation (AF). We hypothesized that parameters of HRV may be predictive of cardiovascular death in patients with AF. Methods and Results From the multicenter prospective Swiss-AF (Swiss Atrial Fibrillation) Cohort Study, we enrolled 1922 patients who were in sinus rhythm or AF. Resting ECG recordings of 5-minute duration were obtained at baseline. Standard parameters of HRV (HRV triangular index, SD of the normal-to-normal intervals, square root of the mean squared differences of successive normal-to-normal intervals and mean heart rate) were calculated. During follow-up, an end point committee adjudicated each cause of death. During a mean follow-up time of 2.6±1.0 years, 143 (7.4%) patients died; 92 deaths were attributable to cardiovascular reasons. In a Cox regression model including multiple covariates (age, sex, body mass index, smoking status, history of diabetes mellitus, history of hypertension, history of stroke/transient ischemic attack, history of myocardial infarction, antiarrhythmic drugs including β blockers, oral anticoagulation), a decreased HRV index ≤ median (14.29), but not other HRV parameters, was associated with an increase in the risk of cardiovascular death (hazard ratio, 1.7; 95% CI, 1.1-2.6; P=0.01) and all-cause death (hazard ratio, 1.42; 95% CI, 1.02-1.98; P=0.04). Conclusions The HRV index measured in a single 5-minute ECG recording in a cohort of patients with AF is an independent predictor of cardiovascular mortality. HRV analysis in patients with AF might be a valuable tool for further risk stratification to guide patient management. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02105844.

Keywords: atrial fibrillation; heart rate variability; morbidity/mortality.

Conflict of interest statement

Dr Zuern reports a research grant from Medtronic and speaker fees from Vifor Pharma and Novartis. Dr Conen has received speaker fees from Servier, Canada. Dr Kühne has received grants from the Swiss National Science Foundation and the Swiss Heart Foundation, and lecture/consulting fees from Daiichi‐Sankyo, Boehringer Ingelheim, Bayer, Pfizer‐BMS, AstraZeneca, Sanofi‐Aventis, Novartis, MSD, Medtronic, Boston Scientific, St. Jude Medical, Biotronik, Sorin, Zoll, and Biosense Webster. Dr Kobza received institutional grants from Abbott, Biosense‐Webster, Biotronik, Boston‐Scientific, Medtronic, and Sis‐Medical. Dr Bonati has received an unrestricted research grant from AstraZeneca, and consultancy or advisory board fees or speaker’s honoraria from Amgen, Bayer, Bristol‐Myers Squibb, Claret Medical, and InnovHeart, and travel grants from AstraZeneca and Bayer. The remaining authors have no disclosures to report.

Figures

Figure 1. Flow chart of patient selection…
Figure 1. Flow chart of patient selection from the Swiss Atrial Fibrillation (Swiss‐AF) Cohort Study.
HRVI indicates heart rate variability triangular index.
Figure 2. Calculation of heart rate variability…
Figure 2. Calculation of heart rate variability triangular index (HRVI).
Left upper figure: Standard resting ECG recording. Left lower figure: Corresponding tachogram of the RR intervals. Right figure: Calculation of HRVI. First, all normal‐to‐normal (NN) intervals are divided according to their length in bins of 8 ms. Second, the number of NN intervals in the modal bin (ie, the maximum of the density distribution) is sought. Finally, the HRVI is defined as the total number of NN intervals divided by the number of NN intervals in the modal bin. X indicates the modal bin; and Y, the number of NN intervals in the modal bin.
Figure 3. Prognostic impact of heart rate…
Figure 3. Prognostic impact of heart rate variability triangular index (HRVI) in the entire study cohort.
Kaplan–Meier curves of cardiovascular and all‐cause mortality stratified by the median heart rate variability triangular index. Mortality probabilities were significantly different (P=0.005 and P=0.008, respectively). Pts indicates patients.
Figure 4. Estimated cardiovascular mortality hazard ratios…
Figure 4. Estimated cardiovascular mortality hazard ratios of heart rate variability triangular index ≤ median (14.29) vs > median by different grouping variables.
The interaction tests whether the hazard ratio depends on the grouping variable; a small P‐value supports that the effect of the heart rate variability triangular index differs between groups.

References

    1. Lloyd‐Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, D'Agostino RB, Massaro JM, Beiser A, Wolf PA, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–1046.
    1. Krijthe BP, Kunst A, Benjamin EJ, Lip GY, Franco OH, Hofman A, Witteman JC, Stricker BH, Heeringa J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013;34:2746–2751.
    1. Benjamin EJ, Wolf PA, D'Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98:946–952.
    1. Conen D, Chae CU, Glynn RJ, Tedrow UB, Everett BM, Buring JE, Albert CM. Risk of death and cardiovascular events in initially healthy women with new‐onset atrial fibrillation. JAMA. 2011;305:2080–2087.
    1. Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, D'Agostino RB, Murabito JM, Kannel WB, Benjamin EJ. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–2925.
    1. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–262.
    1. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart‐rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478–484.
    1. Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992;85:164–171.
    1. Odemuyiwa O, Malik M, Farrell T, Bashir Y, Poloniecki J, Camm J. Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all‐cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol. 1991;68:434–439.
    1. Martin GJ, Magid NM, Myers G, Barnett PS, Schaad JW, Weiss JS, Lesch M, Singer DH. Heart rate variability and sudden death secondary to coronary artery disease during ambulatory electrocardiographic monitoring. Am J Cardiol. 1987;60:86–89.
    1. Wijbenga JA, Balk AH, Meij SH, Simoons ML, Malik M. Heart rate variability index in congestive heart failure: relation to clinical variables and prognosis. Eur Heart J. 1998;19:1719–1724.
    1. Binder T, Frey B, Porenta G, Heinz G, Wutte M, Kreiner G, Gossinger H, Schmidinger H, Pacher R, Weber H. Prognostic value of heart rate variability in patients awaiting cardiac transplantation. Pacing Clin Electrophysiol. 1992;15:2215–2220.
    1. Brouwer J, van Veldhuisen DJ, Man in 't Veld AJ, Haaksma J, Dijk WA, Visser KR, Boomsma F, Dunselman PH. Prognostic value of heart rate variability during long‐term follow‐up in patients with mild to moderate heart failure. The Dutch Ibopamine Multicenter Trial Study Group. J Am Coll Cardiol. 1996;28:1183–1189.
    1. Ponikowski P, Anker SD, Chua TP, Szelemej R, Piepoli M, Adamopoulos S, Webb‐Peploe K, Harrington D, Banasiak W, Wrabec K, et al. Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1997;79:1645–1650.
    1. Priori SG, Aliot E, Blomstrom‐Lundqvist C, Bossaert L, Breithardt G, Brugada P, Camm AJ, Cappato R, Cobbe SM, Di Mario C, et al. Task Force on sudden cardiac death of the European Society of Cardiology. Eur Heart J. 2001;22:1374–1450.
    1. Schwartz PJ, La Rovere MT. ATRAMI: a mark in the quest for the prognostic value of autonomic markers. Autonomic Tone and Reflexes After Myocardial Infarction. Eur Heart J. 1998;19:1593–1595.
    1. Malik M, Farrell T, Cripps T, Camm AJ. Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J. 1989;10:1060–1074.
    1. Myers GA, Martin GJ, Magid NM, Barnett PS, Schaad JW, Weiss JS, Lesch M, Singer DH. Power spectral analysis of heart rate variability in sudden cardiac death: comparison to other methods. IEEE Trans Biomed Eng. 1986;33:1149–1156.
    1. Yi G, Goldman JH, Keeling PJ, Reardon M, McKenna WJ, Malik M. Heart rate variability in idiopathic dilated cardiomyopathy: relation to disease severity and prognosis. Heart. 1997;77:108–114.
    1. Schauerte P, Scherlag BJ, Pitha J, Scherlag MA, Reynolds D, Lazzara R, Jackman WM. Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation. 2000;102:2774–2780.
    1. Bauer A, Deisenhofer I, Schneider R, Zrenner B, Barthel P, Karch M, Wagenpfeil S, Schmitt C, Schmidt G. Effects of circumferential or segmental pulmonary vein ablation for paroxysmal atrial fibrillation on cardiac autonomic function. Heart Rhythm. 2006;3:1428–1435.
    1. Horan LG, Kistler JC. Study of ventricular response in atrial fibrillation. Circ Res. 1961;9:305–311.
    1. Rawles JM, Rowland E. Is the pulse in atrial fibrillation irregularly irregular? Br Heart J. 1986;56:4–11.
    1. Billette J, Nadeau RA, Roberge F. Relation between the minimum RR interval during atrial fibrillation and the functional refractory period of the AV junction. Cardiovasc Res. 1974;8:347–351.
    1. Langendorf R, Pick A. Ventricular response in atrial fibrillation. Role of concealed conduction in the AV junction. Circulation. 1965;32:69–75.
    1. Moore EN. Observations on concealed conduction in atrial fibrillation. Circ Res. 1967;21:201–208.
    1. Vikman S, Lindgren K, Makikallio TH, Yli‐Mayry S, Airaksinen KE, Huikuri HV. Heart rate turbulence after atrial premature beats before spontaneous onset of atrial fibrillation. J Am Coll Cardiol. 2005;45:278–284.
    1. Jons C, Raatikainen P, Gang UJ, Huikuri HV, Joergensen RM, Johannesen A, Dixen U, Messier M, McNitt S, Thomsen PE. Autonomic dysfunction and new‐onset atrial fibrillation in patients with left ventricular systolic dysfunction after acute myocardial infarction: a CARISMA substudy. J Cardiovasc Electrophysiol. 2010;21:983–990.
    1. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–631.
    1. Bettoni M, Zimmermann M. Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation. 2002;105:2753–2759.
    1. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MC, Chen LS, Chen PS. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol. 2011;9:30–39.
    1. Yamazaki M, Vaquero LM, Hou L, Campbell K, Zlochiver S, Klos M, Mironov S, Berenfeld O, Honjo H, Kodama I, et al. Mechanisms of stretch‐induced atrial fibrillation in the presence and the absence of adrenocholinergic stimulation: interplay between rotors and focal discharges. Heart Rhythm. 2009;6:1009–1017.
    1. Agarwal SK, Norby FL, Whitsel EA, Soliman EZ, Chen LY, Loehr LR, Fuster V, Heiss G, Coresh J, Alonso A. Cardiac autonomic dysfunction and incidence of atrial fibrillation: results from 20 years follow‐up. J Am Coll Cardiol. 2017;69:291–299.
    1. Nortamo S, Ukkola O, Kiviniemi A, Tulppo M, Huikuri H, Perkiomaki JS. Impaired cardiac autonomic regulation and long‐term risk of atrial fibrillation in patients with coronary artery disease. Heart Rhythm. 2018;15:334–340.
    1. Perkiomaki J, Ukkola O, Kiviniemi A, Tulppo M, Ylitalo A, Kesaniemi YA, Huikuri H. Heart rate variability findings as a predictor of atrial fibrillation in middle‐aged population. J Cardiovasc Electrophysiol. 2014;25:719–724.
    1. Conen D, Rodondi N, Mueller A, Beer J, Auricchio A, Ammann P, Hayoz D, Kobza R, Moschovitis G, Shah D, et al. Design of the Swiss Atrial Fibrillation Cohort Study (Swiss‐AF): structural brain damage and cognitive decline among patients with atrial fibrillation. Swiss Med Wkly. 2017;147:w14467.
    1. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93:1043–1065.
    1. Nunan D, Sandercock GR, Brodie DA. A quantitative systematic review of normal values for short‐term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33:1407–1417.
    1. Dantas EM, Kemp AH, Andreao RV, da Silva VJD, Brunoni AR, Hoshi RA, Bensenor IM, Lotufo PA, Ribeiro ALP, Mill JG. Reference values for short‐term resting‐state heart rate variability in healthy adults: results from the Brazilian Longitudinal Study of Adult Health‐ELSA‐Brasil study. Psychophysiology. 2018;55:e13052.
    1. Frey B, Heinz G, Binder T, Wutte M, Schneider B, Schmidinger H, Weber H, Pacher R. Diurnal variation of ventricular response to atrial fibrillation in patients with advanced heart failure. Am Heart J. 1995;129:58–65.
    1. Stein KM, Borer JS, Hochreiter C, Devereux RB, Kligfield P. Variability of the ventricular response in atrial fibrillation and prognosis in chronic nonischemic mitral regurgitation. Am J Cardiol. 1994;74:906–911.
    1. Yamada A, Hayano J, Sakata S, Okada A, Mukai S, Ohte N, Kimura G. Reduced ventricular response irregularity is associated with increased mortality in patients with chronic atrial fibrillation. Circulation. 2000;102:300–306.
    1. Cygankiewicz I, Corino V, Vazquez R, Bayes‐Genis A, Mainardi L, Zareba W, de Luna AB, Platonov PG; Investigators MT . Reduced irregularity of ventricular response during atrial fibrillation and long‐term outcome in patients with heart failure. Am J Cardiol. 2015;116:1071–1075.
    1. Platonov PG, Holmqvist F. Atrial fibrillatory rate and irregularity of ventricular response as predictors of clinical outcome in patients with atrial fibrillation. J Electrocardiol. 2011;44:673–677.
    1. Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation. 1982;66:874–880.
    1. Schwartz PJ, Vanoli E, Stramba‐Badiale M, De Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation. 1988;78:969–979.
    1. Ziegler D, Piolot R, Strassburger K, Lambeck H, Dannehl K. Normal ranges and reproducibility of statistical, geometric, frequency domain, and non‐linear measures of 24‐hour heart rate variability. Horm Metab Res. 1999;31:672–679.
    1. Malik M, Farrell T, Camm AJ. Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability. Am J Cardiol. 1990;66:1049–1054.
    1. Farrell TG, Bashir Y, Cripps T, Malik M, Poloniecki J, Bennett ED, Ward DE, Camm AJ. Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal‐averaged electrocardiogram. J Am Coll Cardiol. 1991;18:687–697.
    1. Fukuta H, Hayano J, Ishihara S, Sakata S, Ohte N, Takahashi H, Yokoya M, Toriyama T, Kawahara H, Yajima K, et al. Prognostic value of nonlinear heart rate dynamics in hemodialysis patients with coronary artery disease. Kidney Int. 2003;64:641–648.
    1. Bigger JT Jr, Rolnitzky LM, Steinman RC, Fleiss JL. Predicting mortality after myocardial infarction from the response of RR variability to antiarrhythmic drug therapy. J Am Coll Cardiol. 1994;23:733–740.
    1. Zuanetti G, Latini R, Neilson JM, Schwartz PJ, Ewing DJ. Heart rate variability in patients with ventricular arrhythmias: effect of antiarrhythmic drugs. Antiarrhythmic Drug Evaluation Group (ADEG). J Am Coll Cardiol. 1991;17:604–612.

Source: PubMed

3
Suscribir