Cost-effectiveness of the Adaptive Implementation of Effective Programs Trial (ADEPT): approaches to adopting implementation strategies

Andria B Eisman, David W Hutton, Lisa A Prosser, Shawna N Smith, Amy M Kilbourne, Andria B Eisman, David W Hutton, Lisa A Prosser, Shawna N Smith, Amy M Kilbourne

Abstract

Background: Theory-based methods to support the uptake of evidence-based practices (EBPs) are critical to improving mental health outcomes. Implementation strategy costs can be substantial, and few have been rigorously evaluated. The purpose of this study is to conduct a cost-effectiveness analysis to identify the most cost-effective approach to deploying implementation strategies to enhance the uptake of Life Goals, a mental health EBP.

Methods: We used data from a previously conducted randomized trial to compare the cost-effectiveness of Replicating Effective Programs (REP) combined with external and/or internal facilitation among sites non-responsive to REP. REP is a low-level strategy that includes EBP packaging, training, and technical assistance. External facilitation (EF) involves external expert support, and internal facilitation (IF) augments EF with protected time for internal staff to support EBP implementation. We developed a decision tree to assess 1-year costs and outcomes for four implementation strategies: (1) REP only, (2) REP+EF, (3) REP+EF add IF if needed, (4) REP+EF/IF. The analysis used a 1-year time horizon and assumed a health payer perspective. Our outcome was quality-adjusted life years (QALYs). The economic outcome was the incremental cost-effectiveness ratio (ICER). We conducted deterministic and probabilistic sensitivity analysis (PSA).

Results: Our results indicate that REP+EF add IF is the most cost-effective option with an ICER of $593/QALY. The REP+EF/IF and REP+EF only conditions are dominated (i.e., more expensive and less effective than comparators). One-way sensitivity analyses indicate that results are sensitive to utilities for REP+EF and REP+EF add IF. The PSA results indicate that REP+EF, add IF is the optimal strategy in 30% of iterations at the threshold of $100,000/QALY.

Conclusions: Our results suggest that the most cost-effective implementation support begins with a less intensive, less costly strategy initially and increases as needed to enhance EBP uptake. Using this approach, implementation support resources can be judiciously allocated to those clinics that would most benefit. Our results were not robust to changes in the utility measure. Research is needed that incorporates robust and relevant utilities in implementation studies to determine the most cost-effective strategies. This study advances economic evaluation of implementation by assessing costs and utilities across multiple implementation strategy combinations.

Trial registration: ClinicalTrials.gov Identifier: NCT02151331 , 05/30/2014.

Keywords: Cost-effectiveness analysis; Costs and cost analysis; Implementation science; Mental health services, community.

Conflict of interest statement

None.

Figures

Fig. 1
Fig. 1
Decision tree of the ADEPT trial. aSites that responded to the implementation strategy after the initial 6 months of the Trial Phase: either < 10 patients receiving Life Goals or > 50% of patients receiving Life Goals had ≤ 3 sessions, min dose for clinically significant results. Sites that responded to the implementation strategy discontinued the strategy during the second 6 months/Phase III of the trial
Fig. 2
Fig. 2
Cost-effectiveness plane, organization/payer perspective
Fig. 3
Fig. 3
Tornado diagram showing one-way sensitivity analyses for the base case with the most sensitive parameters. All parameters were evaluated and data are provided in the appendix. Thick vertical black lines on the ends of the bars indicate values at which the initial preferred option is no longer cost-effective
Fig. 4
Fig. 4
The original study design to evaluate effectiveness (a) and decision tree model to evaluate cost-effectiveness (b). This cost-effectiveness analysis focuses on implementation strategies for sites not responding to the REP alone intervention (the “sites not responding to REP alone” portion of the tree in 2a). In the original study, baseline data were gathered prior to initiation of the trial phase (Phase I). In this study, we sought to determine the most cost-effective option for deploying an implementation strategy with multiple components across its all possible permutations (e.g., REP+EF/IF) and comparing this to usual implementation (baseline REP). To accomplish this, we created the decision tree to represent all the decision options and their subsequent steps and estimate their respective costs and consequences to allow for comparison. This modeling approach represents the possible implementation strategy decision options for decision makers, quantifies the uncertainty, and allows for evaluation of alternatives. a In the original trial, non-responding sites were randomized following Phase I to REP+EF or REP+EF/IF. b Following Phase II, non-responding sites in the REP+EF condition were randomized again to either continue REP+EF or add IF (REP+EF/IF). Details of the trial are published elsewhere (see Kilbourne et. al., 2014). c Sites that responded to the implementation strategy after the initial 6 months of the Trial Phase: either < 10 patients receiving Life Goals or > 50% of patients receiving Life Goals had ≤ 3 sessions, min dose for clinically significant results. Sites that responded to the implementation strategy discontinued the strategy during the second 6 months/Phase III of the trial

References

    1. Onken L, Carroll K, Shoham V, Cuthbert B, Riddle M. Reenvisioning clinical science: unifying the discipline to improve the public health. Clin Psychol Sci. 2014;2(1):22–34. doi: 10.1177/2167702613497932.
    1. Bauer M, Altshuler L, Evans D, Beresford T, Williford W, Hauger R. Prevalence and distinct correlates of anxiety, substance, and combined comorbidity in a multi-site public sector sample with bipolar disorder. J Affect Disord. 2005;85(3):301–315. doi: 10.1016/j.jad.2004.11.009.
    1. Kessler R, Heeringa S, Lakoma M, Petukhova M, Rupp AE, Schoenbaum M, et al. Individual and societal effects of mental disorders on earnings in the United States: results from the national comorbidity survey replication. Am J Psychiatry. 2008;165(6):703–711. doi: 10.1176/appi.ajp.2008.08010126.
    1. Kilbourne AM, Li D, Lai Z, Waxmonsky J, Ketter T. Pilot randomized trial of a cross-diagnosis collaborative care program for patients with mood disorders. Depress Anxiety. 2013;30(2):116–122. doi: 10.1002/da.22003.
    1. Kilbourne A, Goodrich D, Nord K, Van Poppelen C, Kyle J, Bauer M, et al. Long-term clinical outcomes from a randomized controlled trial of two implementation strategies to promote collaborative care attendance in community practices. Adm Policy Ment Health. 2015;42(5):642–653. doi: 10.1007/s10488-014-0598-5.
    1. McBride BM, Williford W, Glick H, Kinosian B, Altshuler L, et al. Collaborative care for bipolar disorder: part II. Impact on Clinical Outcome, Function, and Costs. Psychiatr Serv. 2006;57(7):937–945. doi: 10.1176/ps.2006.57.7.937.
    1. Woltmann E, Grogan-Kaylor A, Perron B, Georges H, Kilbourne A, Bauer M. Comparative effectiveness of collaborative chronic care models for mental health conditions across primary, specialty, and behavioral health care settings: systematic review and meta-analysis. Am J Psychiatry. 2012;169(8):790–804. doi: 10.1176/appi.ajp.2012.11111616.
    1. Miller C, Grogan-Kaylor A, Perron B, Kilbourne A, Woltmann E, Bauer M. Collaborative chronic care models for mental health conditions: cumulative meta-analysis and metaregression to guide future research and implementation. Med Care. 2013;51(10):922–930. doi: 10.1097/MLR.0b013e3182a3e4c4.
    1. Kilbourne A, Goodrich D, Lai Z, Clogston J, Waxmonsky J, Bauer M. Life goals collaborative care for patients with bipolar disorder and cardiovascular disease risk. Psychiatr Serv. 2012;63(12):1234–1238. doi: 10.1176/appi.ps.201100528.
    1. Proctor E, Landsverk J, Aarons G, Chambers D, Glisson C, Mittman B. Implementation research in mental health services: an emerging science with conceptual, methodological, and training challenges. Adm Policy Ment Health Ment Health Serv Res. 2009;36(1):24–34. doi: 10.1007/s10488-008-0197-4.
    1. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health Ment Health Serv Res. 2011;38(2):65–76. doi: 10.1007/s10488-010-0319-7.
    1. Institute of Medicine. Improving the quality of health care for mental and substance-use conditions [Internet]. Improving the quality of health care for mental and substance-use conditions: quality chasm series. Washington, DC: National Academies Press; 2006. Available from: .
    1. Kirchner J, Waltz T, Powell B, Smith J, Proctor E. Implementation Strategies. In: Brownson R, Colditz G, Proctor E, editors. Dissemination and implementation research in health: translating science to practice. 2. New York, NY: Oxford University Press; 2018.
    1. Kilbourne A, Neumann M, Pincus H, Bauer M, Stall R. Implementing evidence-based interventions in health care: application of the replicating effective programs framework. Implement Sci IS. 2007;2:42. doi: 10.1186/1748-5908-2-42.
    1. Neumann M, Sogolow E. Replicating effective programs: HIV/AIDS prevention technology transfer. AIDS Educ Prev Off Publ Int Soc AIDS Educ. 2000;12(5 Suppl):35–48.
    1. Bandura A. Social learning theory. Englewood Cliffs, N.J: Prentice Hall; 1977.
    1. Rogers E. Diffusion of innovations. New York: Free Press; 2003.
    1. Tones K, Green J. Health promotion: planning and strategies. London ; Thousand Oaks, Calif: SAGE Publications; 2004. p. xv, 376.
    1. Kilbourne A, Almirall D, Eisenberg D, Waxmonsky J, Goodrich D, Fortney J, et al. Adaptive Implementation of Effective Programs Trial (ADEPT): Cluster randomized SMART trial comparing a standard versus enhanced implementation strategy to improve outcomes of a mood disorders program. Implement Sci. 2014;9(1):132. doi: 10.1186/s13012-014-0132-x.
    1. Harvey G, Kitson A. PARIHS revisited: from heuristic to integrated framework for the successful implementation of knowledge into practice. Implement Sci. 2016;11(1):1–13.
    1. Ritchie M, Dollar K, Miller C, Oliver K, Smith J, Lindsay J, et al. Using implementation facilitation to improve care in the Veterans Health Administration (Version 2) 2017.
    1. Ritchie M, Dollar K, Kearney L, Kirchner J. Research and services partnerships: responding to needs of clinical operations partners: transferring implementation facilitation knowledge and skills. Psychiatr Serv. 2014;65(2):141–143. doi: 10.1176/appi.ps.201300468.
    1. Saldana L, Chamberlain P, Bradford W, Campbell M, Landsverk J. The cost of implementing new strategies (COINS): a method for mapping implementation resources using the stages of implementation completion. Child Youth Serv Rev. 2014;39:177–182. doi: 10.1016/j.childyouth.2013.10.006.
    1. Raghavan R. The role of economic evaluation in dissemination and implementation research. In: Brownson R, Colditz G, Proctor E, editors. Dissemination and implementation research in health: translating science to practice. Oxford; New York: Oxford University Press; 2012. p. xxiii, 536 p.
    1. Raghavan R. The role of economic evaluation in dissemination and implementation research. In: Brownson R, Colditz G, Proctor E, editors. Dissemination and implementation research in health: translating science to practice. Oxford; New York: Oxford University Press; 2018. p. 89–106.
    1. Bauer M, Damschroder L, Hagedorn H, Smith J, Kilbourne A. An introduction to implementation science for the non-specialist. TT -. BMC Psychol. 2015;3(32):12.
    1. Vale L, Thomas R, MacLennan G, Grimshaw J. Systematic review of economic evaluations and cost analyses of guideline implementation strategies. Eur J Health Econ. 2007;8(2):111–121. doi: 10.1007/s10198-007-0043-8.
    1. Powell B, Fernandez M, Williams N, Aarons G, Beidas RS, Lewis C, et al. Enhancing the impact of implementation strategies in healthcare: a research agenda. Front Public Health [Internet]. 2019 [cited 2019 Feb 14];7. Available from: .
    1. Saldana L. The stages of implementation completion for evidence-based practice: protocol for a mixed methods study. Implement Sci IS. 2014;9(1):43. doi: 10.1186/1748-5908-9-43.
    1. Drummond M, Sculpher M, Torrance G, O’Brien B, Stoddart G. Methods for the economic evaluation of health care programmes. Oxford ; New York: Oxford University Press; 2005. p. 379.
    1. Smith S, Almirall D, Prenovost K, Liebrecht C, Kyle J, Eisenberg D, et al. Change in patient outcomes after augmenting a low-level implementation strategy in community practices that are slow to adopt a collaborative chronic care model: a cluster randomized implementation trial. Med Care. 2019;57(7):503–511. doi: 10.1097/MLR.0000000000001138.
    1. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMJ [Internet]. 2013 Mar 25 [cited 2020 Jul 2];346. Available from: .
    1. Spitzer R, Kroenke K, Williams J, Löwe B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch Intern Med. 2006;166(10):1092–1097. doi: 10.1001/archinte.166.10.1092.
    1. Bauer M, Vojta C, Kinosian B, Altshuler L, Glick H. The Internal State Scale: replication of its discriminating abilities in a multisite, public sector sample. Bipolar Disord. 2000;2(4):340–346. doi: 10.1034/j.1399-5618.2000.020409.x.
    1. Glick H, McBride L, Bauer M. A manic-depressive symptom self-report in optical scanable format. Bipolar Disord. 2003;5(5):366–369. doi: 10.1034/j.1399-5618.2003.00043.x.
    1. Zarkin GA, Dunlap LJ, Homsi G. The substance abuse services cost analysis program (SASCAP): a new method for estimating drug treatment services costs. Eval Program Plann. 2004;27(1):35–43. doi: 10.1016/j.evalprogplan.2003.09.002.
    1. U.S. Bureau of Labor Statistics. Consumer Price Index [Internet]. Consumer Price Index. 2019 [cited 2020 Jan 23]. Available from: .
    1. Franks P, Lubetkin E, Gold M, Tancredi D, Jia H. Mapping the SF-12 to the EuroQol EQ-5D Index in a National US Sample. Med Decis Making. 2004;24(3):247–254. doi: 10.1177/0272989X04265477.
    1. Sanders G, Neumann P, Basu A, Brock D, Feeny D, Krahn M, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA - J Am Med Assoc. 2016;316(10):1093–1103. doi: 10.1001/jama.2016.12195.
    1. Humphreys K, Wagner T, Gage M. If substance use disorder treatment more than offsets its costs, why don’t more medical centers want to provide it? A budget impact analysis in the Veterans Health Administration. J Subst Abuse Treat. 2011;41(3):243–251. doi: 10.1016/j.jsat.2011.04.006.
    1. Li L, Shen C, Li X, Robins J. On weighting approaches for missing data. Stat Methods Med Res. 2013;22(1):14–30. doi: 10.1177/0962280211403597.
    1. Messori A, Trippoli S. Incremental cost-effectiveness ratio and net monetary benefit: promoting the application of value-based pricing to medical devices—a European perspective. Ther Innov Regul Sci. 2018;52(6):755–756. doi: 10.1177/2168479018769300.
    1. Neumann P, Sanders G, Russell L, Siegel J, Ganiats T. Cost-effectiveness in health and medicine. Second Edition, New to this Edition: Oxford. New York: Oxford University Press; 2016. p. 536.
    1. Krishnan A, Finkelstein E, Levine E, Foley P, Askew S, Steinberg D, et al. A digital behavioral weight gain prevention intervention in primary care practice: cost and cost-effectiveness analysis. J Med Internet Res. 2019;21(5):e12201. doi: 10.2196/12201.
    1. Neumann P, Cohen J, Weinstein M. Updating cost-effectiveness--the curious resilience of the $50,000-per-QALY threshold. N Engl J Med. 2014;371(9):796–797. doi: 10.1056/NEJMp1405158.
    1. Muennig P, Bounthavong M. Cost-effectiveness analyses in health: a practical approach. 3. San Francisco: Jossey-Bass; 2016. p. xvi, 266.
    1. Lee R, Gortmaker S. Health Dissemination and Implementation within Schools. In: Brownson R, Colditz G, Proctor E, editors. Dissemination and implementation research in health: translating science to practice. 2. New York, NY: Oxford University Press; 2018. pp. 401–416.
    1. van Marrewijk C, Mujakovic S, Fransen G, Numans M, de Wit NJ, Muris JWM, et al. Effect and cost-effectiveness of step-up versus step-down treatment with antacids, H2-receptor antagonists, and proton pump inhibitors in patients with new onset dyspepsia (DIAMOND study): a primary-care-based randomised controlled trial. Lancet Lond Engl. 2009;373(9659):215–225. doi: 10.1016/S0140-6736(09)60070-2.
    1. Cohen D, Reynolds M. Interpreting the results of cost-effectiveness studies. J Am Coll Cardiol. 2008;52(25):2119–2126. doi: 10.1016/j.jacc.2008.09.018.

Source: PubMed

3
Suscribir