Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

R V Deev, A Y Drobyshev, I Y Bozo, A A Isaev, R V Deev, A Y Drobyshev, I Y Bozo, A A Isaev

Abstract

Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into "ordinary" and "activated." The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.

Figures

Figure 1
Figure 1
Generalized classification of current bone grafts.
Figure 2
Figure 2
Scheme of intracellular Smad-mediated transduction pathway for BMP signals. BMP: bone morphogenetic protein; R: receptor.
Figure 3
Figure 3
Scheme of the intracellular cascade pathway of VEGF signals. VEGF: vascular endothelial growth factor; R: receptor; PIP-2: phosphatidylinositol biphosphate; PLCγ: phospholipases Сγ; PLCβ: phospholipases Cβ; SRK, NCK, SHB, and SCK: group of adapter proteins; MAPK: mitogen-activated protein kinase; ERK: complex of extracellular-signal-regulated kinase; FAK: focal adhesion kinase; eNO: endothelial NO-synthase.
Figure 4
Figure 4
Scheme of intracellular cascade pathway of SDF-1 signal transduction. SDF-1: stromal-derived factor-1; R: receptor, PIP-2: phosphatidylinositol biphosphate; PLCγ: phospholipases Сγ; MAPK: mitogen-activated protein kinase; NFkВ: nucleic factor-kappa В; PI3K: phosphoinositide-3-kinase.

References

    1. Number of all-listed procedures for discharges from shortly-stay hospitals, 2010, .
    1. Chiapasco M., Casentini P., Zaniboni M. Bone augmentation procedures in implant dentistry. The International Journal of Oral & Maxillofacial Implants. 2009;24:237–259.
    1. Annual report 2013, Turning a new page, Straumann, .
    1. Bhatt R. A., Rozental T. D. Bone graft substitutes. Hand Clinics. 2012;28(4):457–468. doi: 10.1016/j.hcl.2012.08.001.
    1. Deev R. V., Bozo I. Y. Evolution of Bone Grafts, Materials of the V Russian Symposium with International Participation. Ufa, Russia: Bashkortostan Publishing; 2012. (edited by: E. R. Muldashev).
    1. Lekishvili M. V., Rodionova S. S., Ilina V. K., et al. The basic properties of demineralized bone alloimplants manufactured in the tissue bank CITO. N. Priorov Journal of Traumatology and Orthopedics. 2007;3:80–86.
    1. Wang Z., Guo Z., Bai H., et al. Clinical evaluation of β-TCP in the treatment of lacunar bone defects: a prospective, randomized controlled study. Materials Science and Engineering C. 2013;33(4):1894–1899. doi: 10.1016/j.msec.2012.12.041.
    1. Komlev V. S., Barinov S. M., Bozo I. I., et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior. ACS Applied Materials and Interfaces. 2014;6(19):16610–16620. doi: 10.1021/am502583p.
    1. Zakaria S. M., Zein S. H. S., Othman M. R., Yang F., Jansen J. A. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Engineering Part B: Reviews. 2013;19(5):431–441. doi: 10.1089/ten.teb.2012.0624.
    1. Lanao R. P. F., Jonker A. M., Wolke J. G. C., Jansen J. A., Van Hest J. C. M., Leeuwenburgh S. C. G. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Engineering Part B: Reviews. 2013;19(4):380–390. doi: 10.1089/ten.teb.2012.0443.
    1. Li X., Wang X., Miao Y., et al. Guided bone regeneration at a dehiscence-type defect using chitosan/collagen membranes in dogs. Zhonghua Kou Qiang Yi Xue Za Zhi. 2014;49(4):204–209.
    1. Wang S., Wang X., Draenert F. G., et al. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 2014;67:292–304. doi: 10.1016/j.bone.2014.07.025.
    1. Gololobov V. G., Dulaev A. K., Deev R. B., et al. Morphofunctional Organization, Reactivity and Regeneration of Bone Tissue. Saint Petersburg, Russia: MMA; 2006.
    1. Barradas A. M. C., Yuan H., van Blitterswijk C. A., Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. European Cells & Materials. 2011;21:407–429.
    1. Gololobov V. G., Deduh N. V., Deev R. V. Guidelines for Histology. 2nd. Vol. 2. Saint-Petersburg, Russia: Special Literature Publishing; 2011. Sceletal tissues and organs; pp. 238–322.
    1. Goldman H. M., Cohen D. W. The infrabony pocket: classification and treatment. Journal of Periodontology. 1958;29(4):272–291. doi: 10.1902/jop.1958.29.4.272.
    1. Beckmann R., Tohidnezhad M., Lichte P., et al. New from old, relevant factors for fracture healing in aging bone. Orthopade. 2014;43(4):298–305. doi: 10.1007/s00132-013-2160-7.
    1. Kayal R. A., Tsatsas D., Bauer M. A., et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. Journal of Bone and Mineral Research. 2007;22(4):560–568. doi: 10.1359/jbmr.070115.
    1. Brown M. L., Yukata K., Farnsworth C. W., et al. Delayed fracture healing and increased callus adiposity in a C57BL/6J Murine model of obesity-associated type 2 diabetes mellitus. PLoS ONE. 2014;9(6) doi: 10.1371/journal.pone.0099656.e99656
    1. Larsson S., Fazzalari N. L. Anti-osteoporosis therapy and fracture healing. Archives of Orthopaedic and Trauma Surgery. 2014;134(2):291–297. doi: 10.1007/s00402-012-1558-8.
    1. Miller S. How smoking can hinder fracture healing. Emergency Nurse. 2014;22(4):28–30.
    1. Sloan A., Hussain I., Maqsood M., Eremin O., El-Sheemy M. The effects of smoking on fracture healing. Surgeon. 2010;8(2):111–116. doi: 10.1016/j.surge.2009.10.014.
    1. Stine K. C., Wahl E. C., Liu L., et al. Cisplatin inhibits bone healing during distraction osteogenesis. Journal of Orthopaedic Research. 2014;32(3):464–470. doi: 10.1002/jor.22527.
    1. Savaridas T., Wallace R. J., Salter D. M., Simpson A. H. R. W. Do bisphosphonates inhibit direct fracture healing? A laboratory investigation using an animal model. Bone and Joint Journal. 2013;95(9):1263–1268. doi: 10.1302/0301-620x.95b9.
    1. Xue D., Li F., Chen G., Yan S., Pan Z. Do bisphosphonates affect bone healing? A meta-analysis of randomized controlled trials. Journal of Orthopaedic Surgery and Research. 2014;9, article 45 doi: 10.1186/1749-799x-9-45.
    1. Kan I., Melamed E., Offen D. Integral therapeutic potential of bone marrow mesenchymal stem cells. Current Drug Targets. 2005;6(1):31–41. doi: 10.2174/1389450053344902.
    1. Chen G., Deng C., Li Y.-P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences. 2012;8(2):272–288. doi: 10.7150/ijbs.2929.
    1. Rivera J. C., Strohbach C. A., Wenke J. C., Rathbone C. R. Beyond osteogenesis: an in vitro comparison of the potentials of six bone morphogenetic proteins. Frontiers in Pharmacology. 2013;4, article 125 doi: 10.3389/fphar.2013.00125.
    1. McMahon M. S. Bone morphogenic protein 3 signaling in the regulation of osteogenesis. Orthopedics. 2012;35(11):p. 920. doi: 10.3928/01477447-20121023-02.
    1. Finkenzeller G., Hager S., Stark G. B. Effects of bone morphogenetic protein 2 on human umbilical vein endothelial cells. Microvascular Research. 2012;84(1):81–85. doi: 10.1016/j.mvr.2012.03.010.
    1. Bai Y., Leng Y., Yin G., et al. Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo. Cell and Tissue Research. 2014;356(1):109–121. doi: 10.1007/s00441-013-1781-9.
    1. Zhu F., Friedman M. S., Luo W., Woolf P., Hankenson K. D. The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. Journal of Cellular Physiology. 2012;227(6):2677–2685. doi: 10.1002/jcp.23010.
    1. Friedman M. S., Long M. W., Hankenson K. D. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. Journal of Cellular Biochemistry. 2006;98(3):538–554. doi: 10.1002/jcb.20719.
    1. Glienke J., Schmitt A. O., Pilarsky C., et al. Differential gene expression by endothelial cells in distinct angiogenic states. European Journal of Biochemistry. 2000;267(9):2820–2830. doi: 10.1046/j.1432-1327.2000.01325.x.
    1. Kang Q., Sun M. H., Cheng H., et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Therapy. 2004;11(17):1312–1320. doi: 10.1038/sj.gt.3302298.
    1. Akiyama I., Yoshino O., Osuga Y., et al. Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-A expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reproductive Sciences. 2014;21(4):477–482. doi: 10.1177/1933719113503411.
    1. Lamplot J. D., Qin J., Nan G., et al. BMP9 signaling in stem cell differentiation and osteogenesis. American Journal of Stem Cells. 2013;2(1):1–21.
    1. Suzuki Y., Ohga N., Morishita Y., Hida K., Miyazono K., Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. Journal of Cell Science. 2010;123(part 10):1684–1692. doi: 10.1242/jcs.061556.
    1. Mayr-Wohlfart U., Waltenberger J., Hausser H., et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone. 2002;30(3):472–477. doi: 10.1016/s8756-3282(01)00690-1.
    1. D'Alimonte I., Nargi E., Mastrangelo F., et al. Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. Journal of Biological Regulators and Homeostatic Agents. 2011;25(1):57–69.
    1. Yang Y.-Q., Tan Y.-Y., Wong R., Wenden A., Zhang L.-K., Rabie A. B. M. The role of vascular endothelial growth factor in ossification. International Journal of Oral Science. 2012;4(2):64–68. doi: 10.1038/ijos.2012.33.
    1. Wu Y., Cao H., Yang Y., et al. Effects of vascular endothelial cells on osteogenic differentiation of noncontact co-cultured periodontal ligament stem cells under hypoxia. Journal of Periodontal Research. 2013;48(1):52–65. doi: 10.1111/j.1600-0765.2012.01503.x.
    1. Koch S., Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor Perspectives in Medicine. 2012;2(7) doi: 10.1101/cshperspect.a006502.a006502
    1. Matsumoto T., Bohman S., Dixelius J., et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. The EMBO Journal. 2005;24(13):2342–2353. doi: 10.1038/sj.emboj.7600709.
    1. Bhattacharya R., Kwon J., Li X., et al. Distinct role of PLCβ3 in VEGF-mediated directional migration and vascular sprouting. Journal of Cell Science. 2009;122(part 7):1025–1034. doi: 10.1242/jcs.041913.
    1. Marquez-Curtis L. A., Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. BioMed Research International. 2013;2013:15. doi: 10.1155/2013/561098.561098
    1. Li B., Bai W., Sun P., Zhou B., Hu B., Ying J. The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage. Journal of Interferon and Cytokine Research. 2015;35(1):23–31. doi: 10.1089/jir.2014.0004.
    1. Fagiani E., Christofori G. Angiopoietins in angiogenesis. Cancer Letters. 2013;328(1):18–26. doi: 10.1016/j.canlet.2012.08.018.
    1. Herzog D. P., Dohle E., Bischoff I., Kirkpatrick C. J. Cell communication in a coculture system consisting of outgrowth endothelial cells and primary osteoblasts. BioMed Research International. 2014;2014:15. doi: 10.1155/2014/320123.320123
    1. Shiozawa Y., Jung Y., Ziegler A. M., et al. Erythropoietin couples hematopoiesis with bone formation. PLoS ONE. 2010;5(5) doi: 10.1371/journal.pone.0010853.e10853
    1. Wan L., Zhang F., He Q., et al. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis. PLoS ONE. 2014;9(7) doi: 10.1371/journal.pone.0102010.e102010
    1. Buemi M., Donato V., Bolignano D. Erythropoietin: pleiotropic actions. Recenti Progressi in Medicina. 2010;101(6):253–267. doi: 10.1701/494.5872.
    1. Cokic B. B. B., Cokic V. P., Suresh S., Wirt S., Noguchi C. T. Nitric oxide and hypoxia stimulate erythropoietin receptor via MAPK kinase in endothelial cells. Microvascular Research. 2014;92:34–40. doi: 10.1016/j.mvr.2014.01.009.
    1. Park J.-B. Effects of the combination of fibroblast growth factor-2 and bone morphogenetic protein-2 on the proliferation and differentiation of osteoprecursor cells. Advances in Clinical and Experimental Medicine. 2014;23(3):463–467. doi: 10.17219/acem/37146.
    1. Sai Y., Nishimura T., Muta M., Iizasa H., Miyata T., Nakashima E. Basic fibroblast growth factor is essential to maintain endothelial progenitor cell phenotype in TR-BME2 cells. Biological and Pharmaceutical Bulletin. 2014;37(4):688–693. doi: 10.1248/bpb.b13-00841.
    1. Aenlle K. K., Curtis K. M., Roos B. A., Howard G. A. Hepatocyte growth factor and p38 promote osteogenic differentiation of human mesenchymal stem cells. Molecular Endocrinology. 2014;28(5):722–730. doi: 10.1210/me.2013-1286.
    1. Burgazli K. M., Bui K. L., Mericliler M., Albayrak A. T., Parahuleva M., Erdogan A. The effects of different types of statins on proliferation and migration of HGF-induced Human Umbilical Vein Endothelial Cells (HUVECs) European Review for Medical and Pharmacological Sciences. 2013;17(21):2874–2883.
    1. Nakamura T., Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proceedings of the Japan Academy Series B: Physical and Biological Sciences. 2010;86(6):588–610. doi: 10.2183/pjab.86.588.
    1. Sheng M. H., Lau K. H., Baylink D. J. Role of osteocyte-derived insulin-like growth factor I in developmental growth, modeling, remodeling, and regeneration of the bone. Journal of Bone Metabolism. 2014;21(1):41–54. doi: 10.11005/jbm.2014.21.1.41.
    1. Subramanian I. V., Fernandes B. C. A., Robinson T., Koening J., LaPara K. S., Ramakrishnan S. AAV-2-mediated expression of IGF-1 in skeletal myoblasts stimulates angiogenesis and cell survival. Journal of Cardiovascular Translational Research. 2009;2(1):81–92. doi: 10.1007/s12265-008-9063-8.
    1. Colciago A., Celotti F., Casati L., et al. In vitro effects of PDGF isoforms (AA, BB, AB and CC) on migration and proliferation of SaOS-2 osteoblasts and on migration of human osteoblasts. International Journal of Biomedical Science. 2009;5(4):380–389.
    1. Levi B., James A. W., Wan D. C., Glotzbach J. P., Commons G. W., Longaker M. T. Regulation of human adipose-derived stromal cell osteogenic differentiation by insulin-like growth factor-1 and platelet-derived growth factor-alpha. Plastic and Reconstructive Surgery. 2010;126(1):41–52. doi: 10.1097/prs.0b013e3181da8858.
    1. Wong V. W., Crawford J. D. Vasculogenic cytokines in wound healing. BioMed Research International. 2013;2013:11. doi: 10.1155/2013/190486.190486
    1. Palioto D. B., Rodrigues T. L., Marchesan J. T., Beloti M. M., de Oliveira P. T., Rosa A. L. Effects of enamel matrix derivative and transforming growth factor-β1 on human osteoblastic cells. Head & Face Medicine. 2011;7(1, article 13) doi: 10.1186/1746-160x-7-13.
    1. Peshavariya H. M., Chan E. C., Liu G. S., Jiang F., Dusting G. J. Transforming growth factor-β1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. Journal of Cellular and Molecular Medicine. 2014;18(6):1172–1183. doi: 10.1111/jcmm.12263.
    1. Gao X., Xu Z. Mechanisms of action of angiogenin. Acta Biochimica et Biophysica Sinica. 2008;40(7):619–624. doi: 10.1111/j.1745-7270.2008.00442.x.
    1. Knight M. N., Hankenson K. D. Mesenchymal stem cells in bone regeneration. Advances in Wound Care. 2013;2(6):306–316. doi: 10.1089/wound.2012.0420.
    1. Amable P. R., Teixeira M. V. T., Carias R. B. V., Granjeiro J. M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Research and Therapy. 2014;5(2, article 53) doi: 10.1186/scrt442.
    1. Zhang M., Mal N., Kiedrowski M., et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. The FASEB Journal. 2007;21(12):3197–3207. doi: 10.1096/fj.06-6558com.
    1. Samee M., Kasugai S., Kondo H., Ohya K., Shimokawa H., Kuroda S. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. Journal of Pharmacological Sciences. 2008;108(1):18–31. doi: 10.1254/jphs.08036FP.
    1. Urist M. R. Bone: formation by autoinduction. Science. 1965;150(3698):893–899. doi: 10.1126/science.150.3698.893.
    1. Omelyanenko N. P., Slutsky L. I., Mironov S. P. Connective Tissue, Histophysiology, Biochemistry, Molecular Biology. London, UK: CRC Press; 2013.
    1. Heldin C.-H., Miyazono K., Ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390(6659):465–471. doi: 10.1038/37284.
    1. Zhou Z., Xie J., Lee D., et al. Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Developmental Cell. 2010;19(1):90–102. doi: 10.1016/j.devcel.2010.06.016.
    1. Bessa P. C., Casal M., Reis R. L. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic. Part I (basic concepts) Journal of Tissue Engineering and Regenerative Medicine. 2008;2(1):1–13. doi: 10.1002/term.63.
    1. Jonason J. H., Xiao G., Zhang M., Xing L., Chen D. Post-translational regulation of Runx2 in bone and cartilage. Journal of Dental Research. 2009;88(8):693–703. doi: 10.1177/0022034509341629.
    1. Hanai J.-I., Chen L. F., Kanno T., et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. The Journal of Biological Chemistry. 1999;274(44):31577–31582. doi: 10.1074/jbc.274.44.31577.
    1. Yoshida C. A., Yamamoto H., Fujita T., et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes and Development. 2004;18(8):952–963. doi: 10.1101/gad.1174704.
    1. Cheng S.-L., Shao J.-S., Charlton-Kachigian N., Loewy A. P., Towler D. A. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. The Journal of Biological Chemistry. 2003;278(46):45969–45977. doi: 10.1074/jbc.m306972200.
    1. Merlo G. R., Zerega B., Paleari L., Trombino S., Mantero S., Levi G. Multiple functions of Dlx genes. International Journal of Developmental Biology. 2000;44(6):619–626.
    1. Matsubara T., Kida K., Yamaguchi A., et al. BMP2 regulates osterix through Msx2 and Runx2 during osteoblast differentiation. Journal of Biological Chemistry. 2008;283(43):29119–29125. doi: 10.1074/jbc.m801774200.
    1. Liu T. M., Lee E. H. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Engineering B: Reviews. 2013;19(3):254–263. doi: 10.1089/ten.teb.2012.0527.
    1. Phillips J. E., Gersbach C. A., Wojtowicz A. M., García A. J. Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. Journal of Cell Science. 2006;119(3):581–591. doi: 10.1242/jcs.02758.
    1. Yano M., Inoue Y., Tobimatsu T., et al. Smad7 inhibits differentiation and mineralization of mouse osteoblastic cells. Endocrine Journal. 2012;59(8):653–662. doi: 10.1507/endocrj.ej12-0022.
    1. Tsuji K., Bandyopadhyay A., Harfe B. D., et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics. 2006;38(12):1424–1429. doi: 10.1038/ng1916.
    1. Shu B., Zhang M., Xie R., et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. Journal of Cell Science. 2011;124(20):3428–3440. doi: 10.1242/jcs.083659.
    1. Bandyopadhyay A., Tsuji K., Cox K., Harfe B. D., Rosen V., Tabin C. J. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genetics. 2006;2(12, article e216) doi: 10.1371/journal.pgen.0020216.
    1. Tsuji K., Cox K., Bandyopadhyay A., Harfe B. D., Tabin C. J., Rosen V. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. The Journal of Bone & Joint Surgery—American Volume. 2008;90(1):14–18. doi: 10.2106/jbjs.g.01109.
    1. Cohen M. M., Jr. Biology of RUNX2 and cleidocranial dysplasia. Journal of Craniofacial Surgery. 2013;24(1):130–133. doi: 10.1097/scs.0b013e3182636b7e.
    1. Roberts T., Stephen L., Beighton P. Cleidocranial dysplasia: a review of the dental, historical, and practical implications with an overview of the South African experience. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2013;115(1):46–55. doi: 10.1016/j.oooo.2012.07.435.
    1. Otto F., Thornell A. P., Crompton T., et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–771. doi: 10.1016/s0092-8674(00)80259-7.
    1. Ciurea A. V., Toader C. Genetics of craniosynostosis, review of the literature. Journal of Medicine and Life. 2009;2(1):5–17.
    1. Folkman J., Merler E., Abernathy C., Williams G. Isolation of a tumor factor responsible or angiogenesis. The Journal of Experimental Medicine. 1971;133(2):275–288. doi: 10.1084/jem.133.2.275.
    1. Goel H. L., Mercurio A. M. VEGF targets the tumour cell. Nature Reviews Cancer. 2013;13(12):871–882. doi: 10.1038/nrc3627.
    1. Coultas L., Chawengsaksophak K., Rossant J. Endothelial cells and VEGF in vascular development. Nature. 2005;438(7070):937–945. doi: 10.1038/nature04479.
    1. Olsson A.-K., Dimberg A., Kreuger J., Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nature Reviews Molecular Cell Biology. 2006;7(5):359–371. doi: 10.1038/nrm1911.
    1. Ma X.-N., Li Q.-P., Feng Z.-C. Research progress in cytokines and signaling pathways for promoting pulmonary angiogenesis and vascular development. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(9):800–805. doi: 10.7499/j.issn.1008-8830.2013.09.024.
    1. Arutyunyan I. V., Kananykhina E. Y., Makarov A. V. Role of VEGF-A165 receptors in angiogenesis. Cellular Transplantation and Tissue Engineering. 2013;8(1):12–18.
    1. Neve A., Cantatore F. P., Corrado A., Gaudio A., Ruggieri S., Ribatti D. In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regulatory Peptides. 2013;184:81–84. doi: 10.1016/j.regpep.2013.03.014.
    1. Marini M., Sarchielli E., Toce M., et al. Expression and localization of VEGF receptors in human fetal skeletal tissues. Histology and Histopathology. 2012;27(12):1579–1587.
    1. Tombran-Tink J., Barnstable C. J. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. Biochemical and Biophysical Research Communications. 2004;316(2):573–579. doi: 10.1016/j.bbrc.2004.02.076.
    1. Berendsen A. D., Olsen B. R. How vascular endothelial growth factor-A no. VEGF regulates differentiation of mesenchymal stem cells. Journal of Histochemistry and Cytochemistry. 2014;62(2):103–108. doi: 10.1369/0022155413516347.
    1. Liu Y., Berendsen A. D., Jia S., et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. The Journal of Clinical Investigation. 2012;122(9):3101–3113. doi: 10.1172/jci61209.
    1. Tashiro K., Tada H., Heilker R., Shirozu M., Nakano T., Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261(5121):600–603. doi: 10.1126/science.8342023.
    1. Mellado M., Rodríguez-Frade J. M., Mañes S., et al Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annual Review of Immunology. 2001;19:397–421. doi: 10.1146/annurev.immunol.19.1.397.
    1. Ward S. G. T lymphocytes on the move: chemokines, PI 3-kinase and beyond. Trends in Immunology. 2006;27(2):80–87. doi: 10.1016/j.it.2005.12.004.
    1. Niederberger E., Geisslinger G. Proteomics and NF-κB: an update. Expert Review of Proteomics. 2013;10(2):189–204. doi: 10.1586/epr.13.5.
    1. Chen X., Hu C., Wang G., et al. Nuclear factor-κB modulates osteogenesis of periodontal ligament stem cells through competition with β-catenin signaling in inflammatory microenvironments. Cell Death & Disease. 2013;4, article e510 doi: 10.1038/cddis.2013.14.
    1. Woodward J. Regulation of haematopoietic progenitor cell proliferation and survival: the involvement of the osteoblast. Cell Adhesion and Migration. 2010;4(1):4–6. doi: 10.4161/cam.4.1.10106.
    1. Jung Y., Wang J., Schneider A., et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone. 2006;38(4):497–508. doi: 10.1016/j.bone.2005.10.003.
    1. Khurana S., Melacarne A., Yadak R., et al. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells. 2014;32(11):3012–3022. doi: 10.1002/stem.1794.
    1. Christopher M. J., Liu F., Hilton M. J., Long F., Link D. C. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood. 2009;114(7):1331–1339. doi: 10.1182/blood-2008-10-184754.
    1. Zorin V. L., Komlev V. S., Zorina A. I., et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomedical Materials. 2014;9(5) doi: 10.1088/1748-6041/9/5/055005.055005
    1. Deev R. V., Isaev A. A., Kochish A. Y., et al. The ways of cell technologies development in traumatology and orthopedics. Traumatology and Orthopedics of Russia. 2008;1(47):65–75.
    1. Liu X., Zhang G., Hou C., et al. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells. BioMed Research International. 2013;2013:7. doi: 10.1155/2013/854917.854917
    1. Kim B.-S., Kim J. S., Lee J. Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold. Journal of Biomedical Materials Research Part A. 2013;101(9):2661–2666. doi: 10.1002/jbm.a.34567.
    1. Lü Y. M., Cheng L. M., Pei G. X., et al. Experimental study of repairing femoral bone defects with nHA/RHLC/PLA scaffold composite with endothelial cells and osteoblasts in canines. Zhonghua Yi Xue Za Zhi. 2013;93(17):1335–1340.
    1. Shim J. B., Ankeny R. F., Kim H., Nerem R. M., Khang G. A study of a three-dimensional PLGA sponge containing natural polymers co-cultured with endothelial and mesenchymal stem cells as a tissue engineering scaffold. Biomedical Materials. 2014;9(4) doi: 10.1088/1748-6041/9/4/045015.045015
    1. Illich D. J., Demir N., Stojković M., et al. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells. 2011;29(4):555–563. doi: 10.1002/stem.611.
    1. Pelegrine A. A., Aloise A. C., Zimmermann A., de Mello e Oliveira R., Ferreira L. M. Repair of critical-size bone defects using bone marrow stromal cells: a histomorphometric study in rabbit calvaria. Part I. Use of fresh bone marrow or bone marrow mononuclear fraction. Clinical Oral Implants Research. 2014;25(5):567–572. doi: 10.1111/clr.12117.
    1. De Francesco F., Ricci G., D'Andrea F., Nicoletti G. F., Ferraro G. A. Human adipose stem cells (hASCs): from bench to bed-side. Tissue Engineering Part B: Reviews. 2015 doi: 10.1089/ten.TEB.2014.0608.
    1. Neman J., Duenas V., Kowolik C. M., Hambrecht A. C., Chen M. Y., Jandial R. Lineage mapping and characterization of the native progenitor population in cellular allograft. Spine Journal. 2013;13(2):162–174. doi: 10.1016/j.spinee.2012.11.017.
    1. Kerr E. J., Jawahar A., Wooten T., et al. The use of osteo-conductive stem-cells allograft in lumbar interbody fusion procedures, an alternative to recombinant human bone morphogenetic protein. Journal of Surgical Orthopaedic Advances. 2011;20(3):193–197.
    1. Hollawell S. M. Allograft cellular bone matrix as an alternative to autograft in hindfoot and ankle fusion procedures. Journal of Foot and Ankle Surgery. 2012;51(2):222–225. doi: 10.1053/j.jfas.2011.10.001.
    1. Osepyan I. A., Chaylahyan R. K., Garibyan E. S. Treatment of non-union fractures, pseudoarthroses, defects of long bones with transplantation of autologous bone marrow-derived fibroblasts grown in vitro and placed on the spongy bone matrix. Orthopedics and Traumatology. 1982;9:p. 59.
    1. Osepyan I. A., Chaylahyan R. K., Garibyan E. S., et al. Transplantation of autologous bone marrow-derived fibroblasts in traumatology and orthopedics. I.I. Grekov Bulletin of Surgery. 1988;5:p. 56.
    1. Shchepkina E. A., Kruglyakov P. V., Solomin L. N., et al. Transplantation of autologous multipotent mesenchymal stromal cells seeded on demineralized bone matrix in the treatment of pseudoarthrosis of long bones. Cellular Transplantation and Tissue Engineering. 2007;2(3):67–74.
    1. Drobyshev A. Y., Rubina K. A., Sysoev V. Y., et al. Clinical trial of tissue-engineered construction based on autologous adipose-derived stromal cells in patients with alveolar bone atrophy of the upper and lower jaws. Bulletin of Experimental and Clinical Surgery. 2011;4(4):764–772.
    1. Effectiveness and Safety of Method of Maxilla Alveolar Process Reconstruction Using Synthetic Tricalcium Phosphate and Autologous MMSCs, .
    1. Alekseev I. S., Volkov A. V., Kulakov A. A., et al. Clinical and experimental study of combined cell transplant based on adipose-derived multipotent mesenchymal stromal cells in patients with severe bone tissue deficiency of jaws. Cellular Transplantation and Tissue Engineering. 2012;7(1):97–105.
    1. McKay W. F., Peckham S. M., Badura J. M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft) International Orthopaedics. 2007;31(6):729–734. doi: 10.1007/s00264-007-0418-6.
    1. Burkus J. K., Gornet M. F., Dickman C. A., Zdeblick T. A. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. Journal of Spinal Disorders & Techniques. 2002;15(5):337–349. doi: 10.1097/00024720-200210000-00001.
    1. Dimar J. R., II, Glassman S. D., Burkus J. K., Pryor P. W., Hardacker J. W., Carreon L. Y. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. The Journal of Bone & Joint Surgery—American Volume. 2009;91(6):1377–1386. doi: 10.2106/jbjs.h.00200.
    1. Glassman S. D., Carreon L. Y., Djurasovic M., et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine. 2008;33(26):2843–2849. doi: 10.1097/brs.0b013e318190705d.
    1. Boden S. D., Kang J., Sandhu H., Heller J. G. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo Award in clinical studies. Spine. 2002;27(23):2662–2673. doi: 10.1097/00007632-200212010-00005.
    1. Carragee E. J., Hurwitz E. L., Weiner B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine Journal. 2011;11(6):471–491. doi: 10.1016/j.spinee.2011.04.023.
    1. Woo E. J. Adverse events reported after the use of recombinant human bone morphogenetic protein 2. Journal of Oral and Maxillofacial Surgery. 2012;70(4):765–767. doi: 10.1016/j.joms.2011.09.008.
    1. Chekanov A. V., Fadeeva I. S., Akatov V. S., Solovieva M. E., Vezhnina N. V., Lekishvili M. V. Quantative effect of improving osteoinductive property of a material due to application of recombinant morphogenetic bone protein rhBMP-2. Cellular Transplantation and Tissue Engineering. 2012;7(2):75–81.
    1. Muraev A. A., Ivanov S. Y., Artifexova A. A., et al. Study of the biological properties of a new material based on osteoplastic nondemineralized collagen containing vascular endothelial growth factor in bone defects repair. Current Technologies in Medicine. 2012;1:21–26.
    1. Zhang W., Zhu C., Wu Y., et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. European Cells and Materials. 2014;27:1–11.
    1. Holloway J. L., Ma H., Rai R., Burdick J. A. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. Journal of Controlled Release. 2014;191:63–70. doi: 10.1016/j.jconrel.2014.05.053.
    1. Lauzon M.-A., Bergeron É., Marcos B., Faucheux N. Bone repair, new developments in growth factor delivery systems and their mathematical modeling. Journal of Controlled Release. 2012;162(3):502–520. doi: 10.1016/j.jconrel.2012.07.041.
    1. Yun Y.-R., Jang J. H., Jeon E., et al. Administration of growth factors for bone regeneration. Regenerative Medicine. 2012;7(3):369–385. doi: 10.2217/rme.12.1.
    1. Chang P.-C., Dovban A. S., Lim L. P., Chong L. Y., Kuo M. Y., Wang C.-H. Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials. 2013;34(38):9990–9997. doi: 10.1016/j.biomaterials.2013.09.030.
    1. Kasten P., Beyen I., Bormann D., Luginbühl R., Plöger F., Richter W. The effect of two point mutations in GDF-5 on ectopic bone formation in a β-tricalciumphosphate scaffold. Biomaterials. 2010;31(14):3878–3884. doi: 10.1016/j.biomaterials.2010.01.109.
    1. Kleinschmidt K., Ploeger F., Nickel J., Glockenmeier J., Kunz P., Richter W. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2. Biomaterials. 2013;34(24):5926–5936. doi: 10.1016/j.biomaterials.2013.04.029.
    1. Gene therapy clinical trials worldwide, .
    1. Deev R. V., Bozo I. Y., Mzhavanadze N. D., et al. pCMV-vegf165 intramuscular gene transfer is an effective method of treatment for patients with chronic lower limb ischemia. Journal of Cardiovascular Pharmacology and Therapeutics. 2015;20(5):473–482. doi: 10.1177/1074248415574336.
    1. Deev R. V., Drobyshev R. V., Bozo I. Y., et al. Construction and biological effect evaluation of gene-activated остеопластик material with human vegf gene. Cellular Transplantation and Tissue Engineering. 2013;8(3):78–85.
    1. Wegman F., Bijenhof A., Schuijff L., Öner F. C., Dhert W. J. A., Alblas J. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo. European Cells and Materials. 2011;21:230–242.
    1. Baboo S., Cook P. R. ‘Dark matter’ worlds of unstable RNA and protein. Nucleus. 2014;5(4):281–286.
    1. Evans C. H. Gene delivery to bone. Advanced Drug Delivery Reviews. 2012;64(12):1331–1340. doi: 10.1016/j.addr.2012.03.013.
    1. Grigorian A. S., Schevchenko K. G. Some possible molecular mechanisms of VEGF encoding plasmids functioning. Cellular Transplantation and Tissue Engineering. 2011;4(3):24–28.
    1. Rose T., Peng H., Usas A., Josten C., Fu F. H., Huard J. Ex-vivo gene therapy with BMP-4 for critically sized defects and enhancement of fracture healing in an osteoporotic animal model. Der Unfallchirurg. 2005;108(1):25–34.
    1. Baltzer A. W. A., Lattermann C., Whalen J. D., et al. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Therapy. 2000;7(9):734–739. doi: 10.1038/sj/gt/3301166.
    1. Betz V. M., Betz O. B., Glatt V., et al. Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Human Gene Therapy. 2007;18(10):907–915. doi: 10.1089/hum.2007.077.
    1. Cao L., Liu X., Liu S., et al. Experimental repair of segmental bone defects in rabbits by angiopoietin-1 gene transfected MSCs seeded on porous β-TCP scaffolds. Journal of Biomedical Materials Research—Part B Applied Biomaterials. 2012;100(5):1229–1236. doi: 10.1002/jbm.b.32687.
    1. Virk M. S., Conduah A., Park S.-H., et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone. 2008;42(5):921–931. doi: 10.1016/j.bone.2007.12.216.
    1. Lutz R., Park J., Felszeghy E., Wiltfang J., Nkenke E., Schlegel K. A. Bone regeneration after topical BMP-2-gene delivery in circumferential peri-implant bone defects. Clinical Oral Implants Research. 2008;19(6):590–599. doi: 10.1111/j.1600-0501.2007.01526.x.
    1. Chen J. C., Winn S. R., Gong X., Ozaki W. H. rhBMP-4 gene therapy in a juvenile canine alveolar defect model. Plastic & Reconstructive Surgery. 2007;120(6):1503–1509. doi: 10.1097/01.prs.0000282029.99225.b5.
    1. Sheyn D., Kallai I., Tawackoli W., et al. Gene-modified adult stem cells regenerate vertebral bone defect in a rat model. Molecular Pharmaceutics. 2011;8(5):1592–1601. doi: 10.1021/mp200226c.
    1. Bertone A. L., Pittman D. D., Bouxsein M. L., Li J., Clancy B., Seeherman H. J. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. Journal of Orthopaedic Research. 2004;22(6):1261–1270. doi: 10.1016/j.orthres.2004.03.014.
    1. Li J. Z., Li H., Hankins G. R., et al. Different osteogenic potentials of recombinant human BMP-6 adeno-associated virus and adenovirus in two rat strains. Tissue Engineering. 2006;12(2):209–219. doi: 10.1089/ten.2006.12.209.
    1. Bright C., Park Y.-S., Sieber A. N., Kostuik J. P., Leong K. W. In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine. 2006;31(19):2163–2172. doi: 10.1097/01.brs.0000232721.59901.45.
    1. Schek R. M., Hollister S. J., Krebsbach P. H. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Molecular Therapy. 2004;9(1):130–138. doi: 10.1016/j.ymthe.2003.10.002.
    1. Song K., Rao N., Chen M., Cao Y. Construction of adeno-associated virus system for human bone morphogenetic protein 7 gene. Journal of Huazhong University of Science and Technology—Medical Science. 2008;28(1):17–21. doi: 10.1007/s11596-008-0105-x.
    1. Breitbart A. S., Grande D. A., Mason J. M., Barcia M., James T., Grant R. T. Gene-enhanced tissue engineering: applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Annals of Plastic Surgery. 1999;42(5):488–495. doi: 10.1097/00000637-199905000-00005.
    1. Kimelman-Bleich N., Pelled G., Zilberman Y., et al. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Molecular Therapy. 2011;19(1):53–59. doi: 10.1038/mt.2010.190.
    1. Abdelaal M. M., Tholpady S. S., Kessler J. D., Morgan R. F., Ogle R. C. BMP-9-transduced prefabricated muscular flaps for the treatment of bony defects. The Journal of Craniofacial Surgery. 2004;15(5):736–741. doi: 10.1097/00001665-200409000-00007.
    1. Kuroda S., Goto N., Suzuki M., et al. Regeneration of bone- and tendon/ligament-like tissues induced by gene transfer of bone morphogenetic protein-12 in a rat bone defect. Journal of Tissue Engineering. 2010;1(1) doi: 10.4061/2010/891049.891049
    1. Rundle C. H., Strong D. D., Chen S.-T., et al. Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture healing in the rat. Journal of Gene Medicine. 2008;10(3):229–241. doi: 10.1002/jgm.1148.
    1. Li C., Ding J., Jiang L., et al. Potential of mesenchymal stem cells by adenovirus-mediated erythropoietin gene therapy approaches for bone defect. Cell Biochemistry and Biophysics. 2014;70(2):1199–1204. doi: 10.1007/s12013-014-0042-1.
    1. Wallmichrath J. C., Stark G. B., Kneser U., et al. Epidermal growth factor (EGF) transfection of human bone marrow stromal cells in bone tissue engineering. Journal of Cellular and Molecular Medicine. 2009;13(8):2593–2601. doi: 10.1111/j.1582-4934.2008.00600.x.
    1. Guo X., Zheng Q., Kulbatski I., et al. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds. Biomedical Materials. 2006;1(3):93–99. doi: 10.1088/1748-6041/1/3/001.
    1. Wen Q., Zhou C., Luo W., Zhou M., Ma L. Pro-osteogenic effects of fibrin glue in treatment of avascular necrosis of the femoral head in vivo by hepatocyte growth factor-transgenic mesenchymal stem cells. Journal of Translational Medicine. 2014;12(1, article 114) doi: 10.1186/1479-5876-12-114.
    1. Zou D., Zhang Z., He J., et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials. 2012;33(7):2097–2108. doi: 10.1016/j.biomaterials.2011.11.053.
    1. Shen F. H., Visger J. M., Balian G., Hurwitz S. R., Diduch D. R. Systemically administered mesenchymal stromal cells transduced with insulin-like growth factor-I localize to a fracture site and potentiate healing. Journal of Orthopaedic Trauma. 2002;16(9):651–659. doi: 10.1097/00005131-200210000-00007.
    1. Srouji S., Ben-David D., Fromigué O., et al. Lentiviral-mediated integrin α5 expression in human adult mesenchymal stromal cells promotes bone repair in mouse cranial and long-bone defects. Human Gene Therapy. 2012;23(2):167–172. doi: 10.1089/hum.2011.059.
    1. Strohbach C. A., Rundle C. H., Wergedal J. E., et al. LMP-1 retroviral gene therapy influences osteoblast differentiation and fracture repair: a preliminary study. Calcified Tissue International. 2008;83(3):202–211. doi: 10.1007/s00223-008-9163-0.
    1. Lattanzi W., Parrilla C., Fetoni A., et al. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Therapy. 2008;15(19):1330–1343. doi: 10.1038/gt.2008.116.
    1. Lu S. S., Zhang X., Soo C., et al. The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine Journal. 2007;7(1):50–60. doi: 10.1016/j.spinee.2006.04.020.
    1. Tu Q., Valverde P., Li S., Zhang J., Yang P., Chen J. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Engineering. 2007;13(10):2431–2440. doi: 10.1089/ten.2006.0406.
    1. Jin Q., Anusaksathien O., Webb S. A., Printz M. A., Giannobile W. V. Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Molecular Therapy. 2004;9(4):519–526. doi: 10.1016/j.ymthe.2004.01.016.
    1. Elangovan S., D'Mello S. R., Hong L., et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials. 2014;35(2):737–747. doi: 10.1016/j.biomaterials.2013.10.021.
    1. Fang J., Zhu Y.-Y., Smiley E., et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(12):5753–5758. doi: 10.1073/pnas.93.12.5753.
    1. Pan H., Zheng Q., Yang S., et al. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration. Journal of Biomedical Materials Research A. 2014;102(8):2864–2874. doi: 10.1002/jbm.a.34961.
    1. Geiger F., Bertram H., Berger I., et al. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. Journal of Bone and Mineral Research. 2005;20(11):2028–2035. doi: 10.1359/jbmr.050701.
    1. Tarkka T., Sipola A., Jämsä T., et al. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. The Journal of Gene Medicine. 2003;5(7):560–566. doi: 10.1002/jgm.392.
    1. Koh J. T., Zhao Z., Wang Z., Lewis I. S., Krebsbach P. H., Franceschi R. T. Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration. Journal of Dental Research. 2008;87(9):845–849. doi: 10.1177/154405910808700906.
    1. Menendez M. I., Clark D. J., Carlton M., et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis and Cartilage. 2011;19(8):1066–1075. doi: 10.1016/j.joca.2011.05.007.
    1. Reichert J. C., Schmalzl J., Prager P., et al. Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells. Stem Cell Research and Therapy. 2013;4(5, article 105) doi: 10.1186/scrt316.
    1. Deng Y., Zhou H., Yan C., et al. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair. Tissue Engineering A. 2014;20(13-14):2019–2029. doi: 10.1089/ten.tea.2013.0604.
    1. Liu J., Xu L., Li Y., Ma J. Temporally controlled multiple-gene delivery in scaffolds: a promising strategy to enhance bone regeneration. Medical Hypotheses. 2011;76(2):173–175. doi: 10.1016/j.mehy.2010.09.009.
    1. Zhang Y., Cheng N., Miron R., Shi B., Cheng X. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials. 2012;33(28):6698–6708. doi: 10.1016/j.biomaterials.2012.06.021.
    1. Ito H., Koefoed M., Tiyapatanaputi P., et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nature Medicine. 2005;11(3):291–297. doi: 10.1038/nm1190.
    1. Feichtinger G. A., Hofmann A. T., Slezak P., et al. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Human Gene Therapy Methods. 2014;25(1):57–71. doi: 10.1089/hgtb.2013.113.
    1. Wehrhan F., Amann K., Molenberg A., Lutz R., Neukam F. W., Schlegel K. A. Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes—the osteopromotive principle revisited. Clinical Oral Implants Research. 2013;24(8):910–920. doi: 10.1111/j.1600-0501.2012.02489.x.
    1. Die X., Luo Q., Chen C., Luo G., Kang Q. Construction of a recombinant adenovirus co-expressing bone morphogenic proteins 9 and 6 and its effect on osteogenesis in C3H10 cells. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(9):1273–1279.
    1. Seamon J., Wang X., Cui F., et al. Adenoviral delivery of the VEGF and BMP-6 genes to rat mesenchymal stem cells potentiates osteogenesis. Bone Marrow Research. 2013;2013:9. doi: 10.1155/2013/737580.737580
    1. Yang L., Zhang Y., Dong R., et al. Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulin-like growth factor-1 on human periodontal ligament cells. Journal of Periodontal Research. 2010;45(4):532–540. doi: 10.1111/j.1600-0765.2009.01268.x.
    1. Liu J.-Z., Hu Y.-Y., Ji Z.-L. Co-expression of human bone morphogenetic protein-2 and osteoprotegerin in myoblast C2C12. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003;17(1):1–4.
    1. Kim M. J., Park J. S., Kim S., et al. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration. Stem Cells and Development. 2011;20(8):1349–1358. doi: 10.1089/scd.2010.0311.
    1. Li J., Zhao Q., Wang E., Zhang C., Wang G., Yuan Q. Transplantation of Cbfa1-overexpressing adipose stem cells together with vascularized periosteal flaps repair segmental bone defects. Journal of Surgical Research. 2012;176(1):e13–e20. doi: 10.1016/j.jss.2011.12.011.
    1. Bhattarai G., Lee Y. H., Lee M. H., Yi H. K. Gene delivery of c-myb increases bone formation surrounding oral implants. Journal of Dental Research. 2013;92(9):840–845. doi: 10.1177/0022034513497753.
    1. Zhao Z., Wang Z., Ge C., Krebsbach P., Franceschi R. T. Healing cranial defects with AdRunx2-transduced marrow stromal cells. Journal of Dental Research. 2007;86(12):1207–1211. doi: 10.1177/154405910708601213.
    1. Takahashi T. Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro. Calcified Tissue International. 2011;88(4):336–347. doi: 10.1007/s00223-011-9461-9.
    1. Cucchiarini M., Orth P., Madry H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. Journal of Molecular Medicine. 2013;91(5):625–636. doi: 10.1007/s00109-012-0978-9.
    1. Itaka K., Ohba S., Miyata K., et al. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Molecular Therapy. 2007;15(9):1655–1662. doi: 10.1038/sj.mt.6300218.
    1. Keeney M., van den Beucken J. J. J. P., van der Kraan P. M., Jansen J. A., Pandit A. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF165. Biomaterials. 2010;31(10):2893–2902. doi: 10.1016/j.biomaterials.2009.12.041.
    1. Deev R., Drobyshev A., Bozo I., et al. Angiogenic non-viral gene transfer, from ischemia treatment to bone defects repair. Journal of Tissue Engineering and Regenerative Medicine. 2014;8(supplement 1):64–65.
    1. Anitua E., Alkhraisat M. H., Orive G. Perspectives and challenges in regenerative medicine using plasma rich in growth factors. Journal of Controlled Release. 2012;157(1):29–38. doi: 10.1016/j.jconrel.2011.07.004.
    1. Shaw R. J., Brown J. S. Osteomyocutaneous deep circumflex iliac artery perforator flap in the reconstruction of midface defect with facial skin loss: a case report. Microsurgery. 2009;29(4):299–302. doi: 10.1002/micr.20623.

Source: PubMed

3
Suscribir