Feasibility of an incentive scheme to promote active travel to school: a pilot cluster randomised trial

Samuel Ginja, Bronia Arnott, Vera Araujo-Soares, Anil Namdeo, Elaine McColl, Samuel Ginja, Bronia Arnott, Vera Araujo-Soares, Anil Namdeo, Elaine McColl

Abstract

Background: In Great Britain, 19% of trips to primary school within 1 mile, and 62% within 1-2 miles, are by car. Active travel to school (ATS) offers a potential source of moderate-to-vigorous physical activity (MVPA). This study tested the feasibility of an intervention to promote ATS in 9-10 year olds and associated trial procedures.

Methods: A parallel cluster randomised pilot trial was conducted over 9 weeks in two schools from a low-income area in northeast England. Measures included daily parental ATS reports (optionally by SMS) and child ATS reports, as well as accelerometry (ActiGraph GT3X+). At baseline, all children were asked to wear the accelerometer for the same week; in the post-randomisation phase, small subsamples were monitored each week. In the 2 weeks when a child wore the accelerometer, parents also reported the start and finish times of the journey to school. The intervention consisted of a lottery-based incentive scheme; every ATS day reported by the parent, whether by paper or SMS, corresponded to one ticket entered into a weekly £5 voucher draw. Before each draw session, the researcher prepared the tickets and placed them into an opaque bag, from which one was randomly picked by the teacher at the draw session.

Results: Four schools replied positively (3.3%, N = 123) and 29 participants were recruited in the two schools selected (33.0%, N = 88). Participant retention was 93.1%. Most materials were returned on time: accelerometers (81.9%), parental reports (82.1%) and child reports (97.9%). Draw sessions lasted on average 15.9 min (IQR 10-20) and overall session attendance was 94.5%. Parent-child report agreement regarding ATS was moderate (k = 0.53, CI 95% 0.45; 0.60). Differences in minutes of accelerometer-assessed MVPA between parent-reported ATS and non-ATS trips were assessed during two timeframes: during the journey to school based on the times reported by the parent (U = 390.5, p < 0.05, 2.46 (n = 99) vs 0.76 (n = 13)) and in the hour before classes (U = 665.5, p < 0.05, 4.99 (n = 104) vs 2.55 (n = 19)). Differences in MVPA minutes between child-reported ATS and non-ATS trips were also significant for each of the timeframes considered (U = 596.5, p < 0.05, 2.40 (n = 128) vs 0.81 (n = 15) and U = 955.0, p < 0.05, 4.99 (n = 146) vs 2.59 (n = 20), respectively).

Conclusions: Data suggest the feasibility of an ATS incentive scheme and of most trial procedures. School recruitment stood out as requiring further piloting.

Trial registration: ClinicalTrials.gov: NCT02282631. Registered 5th September 2014.

Keywords: Accelerometers; Active travel; Children; Cycling; Incentives; Physical activity; Schools; Walking.

Conflict of interest statement

Ethics approval and consent to participate

The ethics committee at the Faculty of Medical Sciences at Newcastle University granted approval for this study on 27 May 2014 (case 00759). Schools and parents provided verbal and written informed consent, respectively, and children provided written assent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram for the RIGHT TRACKS pilot cluster randomised controlled trial
Fig. 2
Fig. 2
Weekly distribution of ATS trips based on parental report
Fig. 3
Fig. 3
Weekly distribution of ATS trips based on child report
Fig. 4
Fig. 4
Association between trip duration and MVPA

References

    1. WHO . World Health Organisation. Physical activity. 2016.
    1. Townsend N, Wickramasinghe K, Williams J, Bhatnagar P, Rayner M. Physical activity statistics. 2015. p. 2015.
    1. Martin A, Kelly P, Boyle J, Corlett F, Reilly J. Contribution of walking to school to individual and population moderate-vigorous intensity physical activity: systematic review and meta-analysis. Pediatr Exerc Sci. 2016;28(3):353–363. doi: 10.1123/pes.2015-0207.
    1. Department for Transport . National travel survey: 2014. 2015.
    1. Chillon P, Evenson KR, Vaughn A, Ward DS. A systematic review of interventions for promoting active transportation to school. Int J Behav Nutr Phys Act. 2011;8:10. doi: 10.1186/1479-5868-8-10.
    1. Villa-González E, Ruiz JR, Ward DS, Chillón P. Effectiveness of an active commuting school-based intervention at 6-month follow-up. Eur J Public Health. 2016;26(2):272–276. doi: 10.1093/eurpub/ckv208.
    1. Jensen JD, Hartmann H, de Mul A, Schuit A, Brug J. Economic incentives and nutritional behavior of children in the school setting: a systematic review. Nutr Rev. 2011;69(11):660–674. doi: 10.1111/j.1753-4887.2011.00422.x.
    1. Kavanagh J, Oakley A, Harden A, Trouton A, Powell C. Are incentive schemes effective in changing young people’s behaviour? A systematic review. Health Educ J. 2011;70(2):192–205. doi: 10.1177/0017896910375878.
    1. Cuffe HE, Harbaugh WT, Lindo JM, Musto G, Waddell GR. Evidence on the efficacy of school-based incentives for healthy living. Econ Educ Rev. 2012;31(6):1028–1036. doi: 10.1016/j.econedurev.2012.07.001.
    1. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. BMJ. 2008;337:a1655. doi: 10.1136/bmj.a1655.
    1. Hovell MF, Wahlgren DR, Adams MA. The logical and empirical basis for the behavioral ecological model. Emerg Theories Health Promot Pract Res. 2009;2:347–385.
    1. Panter J, Corder K, Griffin SJ, Jones AP, van Sluijs EMF. Individual, socio-cultural and environmental predictors of uptake and maintenance of active commuting in children: longitudinal results from the SPEEDY study. Int J Behav Nutr Phys Act. 2013;10(1):83. doi: 10.1186/1479-5868-10-83.
    1. Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46(8):1564. doi: 10.1249/MSS.0000000000000275.
    1. Wheeler BW, Cooper AR, Page AS, Jago R. Greenspace and children's physical activity: a GPS/GIS analysis of the PEACH project. Prev Med. 2010;51(2):148–152. doi: 10.1016/j.ypmed.2010.06.001.
    1. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–1565. doi: 10.1080/02640410802334196.
    1. Sustrans . Sustrans. Join the movement. 2016.
    1. Skinner BF. Science and human behavior. 1953.
    1. Halifax Press Team. Annual Halifax pocket money survey. London: Halifax Press Release; 2014.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. StataCorp . Stata Statistical Software: Release 14 [computer program] College Station: StataCorp LP; 2015.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. Hillsdale: L’. Erlbaum; 1988.
    1. Lloyd JJ, Wyatt KM, Creanor S. Behavioural and weight status outcomes from an exploratory trial of the Healthy Lifestyles Programme (HeLP): a novel school-based obesity prevention programme. BMJ Open. 2012;2(3):1–12. doi: 10.1136/bmjopen-2011-000390.
    1. Owen CG, Nightingale CM, Rudnicka AR, Cook DG, Ekelund U, Whincup PH. Ethnic and gender differences in physical activity levels among 9–10-year-old children of white European, South Asian and African–Caribbean origin: the Child Heart Health Study in England (CHASE study) Int J Epidemiol. 2009;38(4):1082–1093. doi: 10.1093/ije/dyp176.
    1. Van Sluijs EMF, Skidmore PML, Mwanza K, Jones AP, Callaghan AM, Ekelund U, Harrison F, Harvey I, Panter J, Wareham NJ. Physical activity and dietary behaviour in a population-based sample of British 10-year old children: the SPEEDY study (sport, physical activity and eating behaviour: environmental determinants in young people) BMC Public Health. 2008;8(1):388. doi: 10.1186/1471-2458-8-388.
    1. Goodman A, Paskins J, Mackett R. Day length and weather effects on children’s physical activity and participation in play, sports, and active travel. J Phys Act Health. 2012;9(8):1105. doi: 10.1123/jpah.9.8.1105.
    1. McMinn D. Children’s active school travel: the effect of a school-based intervention and an investigation of psychological predictors. Glasgow: University of Strathclyde; 2012.
    1. Drews KL, Harrell JS, Thompson D, Mazzuto SL, Ford EG, Carter M, Ford DA, Yin Z, Jessup AN, Roullet JB. Recruitment and retention strategies and methods in the HEALTHY study. Int J Obes. 2009;33:S21–S28. doi: 10.1038/ijo.2009.113.
    1. Spence S, White M, Adamson AJ, Matthews JNS. Does the use of passive or active consent affect consent or completion rates, or dietary data quality? Repeat cross-sectional survey among school children aged 11–12 years. BMJ Open. 2015;5(1):e006457. doi: 10.1136/bmjopen-2014-006457.
    1. Hunter RF, de Silva D, Reynolds V, Bird W, Fox KR. International inter-school competition to encourage children to walk to school: a mixed methods feasibility study. BMC Res Notes. 2015;8:19. doi: 10.1186/s13104-014-0959-x.
    1. Cooper AR, Page AS, Wheeler BW, Hillsdon M, Griew P, Jago R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: the PEACH project. Int J Behav Nutr Phys Act. 2010;7:31–39. doi: 10.1186/1479-5868-7-31.
    1. McDonald L, FitzRoy S, Fuchs I, Fooken I, Klasen H. Strategies for high retention rates of low-income families in FAST (families and schools together): an evidence-based parenting programme in the USA, UK, Holland and Germany. Eur J Dev Pssychol. 2012;9(1):75–88. doi: 10.1080/17405629.2011.632134.
    1. Shapiro JR, Bauer S, Hamer RM, Kordy H, Ward D, Bulik CM. Use of text messaging for monitoring sugar-sweetened beverages, physical activity, and screen time in children: a pilot study. J Nutr Educ Behav. 2008;40(6):385–391. doi: 10.1016/j.jneb.2007.09.014.
    1. Brooke HL, Atkin AJ, Corder K, Ekelund U, van Sluijs EMF. Changes in time-segment specific physical activity between ages 10 and 14 years: a longitudinal observational study. J Sci Med Sport. 2016;19(1):29–34. doi: 10.1016/j.jsams.2014.10.003.
    1. Dessing D, Pierik FH, Sterkenburg RP, van Dommelen P, Maas J, de Vries SI. Schoolyard physical activity of 6-11 year old children assessed by GPS and accelerometry. Int J Behav Nutr Phys Act. 2013;10:97. doi: 10.1186/1479-5868-10-97.
    1. Fagg J, Cole TJ, Cummins S, Goldstein H, Morris S, Radley D, Sacher P, Law C. After the RCT: who comes to a family-based intervention for childhood overweight or obesity when it is implemented at scale in the community? J Epidemiol Community Health. 2014;69(2):142–148. doi: 10.1136/jech-2014-204155.
    1. Cooper A, Page A, Foster L, Qahwaji D. Commuting to school: are children who walk more physically active? Am J Prev Med. 2003;25(4):273–276. doi: 10.1016/S0749-3797(03)00205-8.
    1. Southward EF, Page AS, Wheeler BW, Cooper AR. Contribution of the school journey to daily physical activity in children aged 11-12 years. Am J Prev Med. 2012;43(2):201–204. doi: 10.1016/j.amepre.2012.04.015.
    1. Bonell C, Fletcher A, Morton M, Lorenc T, Moore L. Realist randomised controlled trials: a new approach to evaluating complex public health interventions. Soc Sci Med. 2012;75(12):2299–2306. doi: 10.1016/j.socscimed.2012.08.032.

Source: PubMed

3
Suscribir