Improved precision of noise estimation in CT with a volume-based approach

Hendrik Joost Wisselink, Gert Jan Pelgrim, Mieneke Rook, Ivan Dudurych, Maarten van den Berge, Geertruida H de Bock, Rozemarijn Vliegenthart, Hendrik Joost Wisselink, Gert Jan Pelgrim, Mieneke Rook, Ivan Dudurych, Maarten van den Berge, Geertruida H de Bock, Rozemarijn Vliegenthart

Abstract

Assessment of image noise is a relevant issue in computed tomography (CT). Noise is routinely measured by the standard deviation of density values (Hounsfield units, HU) within a circular region of interest (ROI). We explored the effect of a spherical volume of interest (VOI) on noise measurements. Forty-nine chronic obstructive pulmonary disease patients underwent CT with clinical protocol (regular dose [RD], volumetric CT dose index [CTDIvol] 3.04 mGy, 64-slice unit), and ultra-low dose (ULD) protocol (median CTDIvol 0.38 mGy, dual-source unit). Noise was measured in 27 1-cm2 ROIs and 27 0.75-cm3 VOIs inside the trachea. Median true noise was 21 HU (range 17-29) for RD-CT and 33 HU (26-39) for ULD-CT. The VOI approach resulted in a lower mean distance between limits of agreement compared to ROI: 5.9 versus 10.0 HU for RD-CT (-40%); 4.7 versus 9.9 HU for ULD-CT (-53%). Mean systematic bias barely changed: -1.6 versus -0.9HU for RD-CT; 0.0 to 0.4HU for ULD-CT. The average measurement time was 6.8 s (ROI) versus 9.7 (VOI), independent of dose level. For chest CT, measuring noise with a VOI-based instead of a ROI-based approach reduces variability by 40-53%, without a relevant effect on systematic bias and measurement time.

Trial registration: ClinicalTrials.gov NCT02477397.

Keywords: Data accuracy; Noise; Pulmonary disease (chronic obstructive); Thorax; Tomography (x-ray computed).

Conflict of interest statement

RV is supported by an institutional grant from Siemens Healthineers. The other authors have no competing interests to be declared.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flow chart of the steps to determine the ground truth noise and the isocenter for the measurements. ROI, region of interest; VOI, volume of interest
Fig. 2
Fig. 2
Subsection of the CT images around the carina (window width 1600 HU, window level −700 HU). The red part is the position of the region of interest, the blue is the volume of interest, the yellow is used to measure the ground truth, and the green area was removed from the segmentation to prevent edge artifacts like the partial volume effect. This image shows the measurement with the isocenter 1.0 cm above the carina ridge. a Axial images. b Coronal images, interpolated to account for the anisotropic dimensions of the voxels. c Volume render of the yellow segmentation
Fig. 3
Fig. 3
Results of the Bland-Altman analyses. Each plot shows the difference between the noise measured with either ROI or VOI and ground truth noise on the y-axis, versus ground truth on the x-axis. Regular radiation dose computed tomography protocol measured with an ROI (a) or a VOI (b), same data for ultra-low dose protocol (c and d, respectively). ROI, region of interest; VOI, volume of interest; LoA, limits of agreement; HU, Hounsfield units

References

    1. European Commission (2000) European guidelines on quality criteria for CT, available at , archived at . Office for Official Publications of the European Communities
    1. Messerli M, Ottilinger T, Warschkow R, Leschka S, Alkadhi H, Wildermuth S, Bauer RW. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT–intra-individual comparison with standard dose CT. Eur J Radiol. 2017;91:1–9. doi: 10.1016/j.ejrad.2017.03.003.
    1. den Harder AM, de Boer E, Lagerweij SJ, Boomsma MF, Schilham AMR, Willemink MJ, Milles J, Leiner T, Budde RPJ, de Jong PA. Emphysema quantification using chest CT: influence of radiation dose reduction and reconstruction technique. Eur Radiol Exp. 2018;2:30. doi: 10.1186/s41747-018-0064-3.
    1. Martin SP, Gariani J, Feutry G, Adler D, Karenovics W, Becker CD, Montet X. Emphysema quantification using hybrid versus model-based generations of iterative reconstruction: SAFIRE versus ADMIRE. Medicine. 2019;98:e14450. doi: 10.1097/MD.0000000000014450.
    1. Wisselink HJ, Pelgrim GJ, Rook M, van den Berge M, Slump K, Nagaraj Y, van Ooijen P, Oudkerk M, Vliegenthart R. Potential for dose reduction in CT emphysema densitometry with post-scan noise reduction: a phantom study. Br J Radiol. 2019;93:20181019. doi: 10.1259/bjr.20181019.
    1. Ganeshan B, Miles KA, Young RC, Chatwin CR. In search of biologic correlates for liver texture on portal-phase CT. Acad Radiol. 2007;14:1058–1068. doi: 10.1016/j.acra.2007.05.023.
    1. Bora A, Alptekin C, Yavuz A, Batur A, Akdemir Z, Berköz M. Assessment of liver volume with computed tomography and comparison of findings with ultrasonography. Abdominal Imaging. 2014;39:1153–1161. doi: 10.1007/s00261-014-0146-5.
    1. Kalra MK, Maher MM, Kamath RS, Horiuchi T, Toth TL, Halpern EF, Saini S. Sixteen–detector row CT of abdomen and pelvis: study for optimization of z-axis modulation technique performed in 153 patients. Radiology. 2004;233:241–249. doi: 10.1148/radiol.2331031505.
    1. Pontana F, Pagniez J, Flohr T, Faivre JB, Duhamel A, Remy J, Remy-Jardin M. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur Radiol. 2011;21:627–635. doi: 10.1007/s00330-010-1990-5.
    1. Wetzl M, May MS, Weinmann D, Hammon M, Treutlein C, Zeilinger M, Kiefer A, Trollmann R, Woelfle J, Uder M, Rompel O. Dual-source computed tomography of the lung with spectral shaping and advanced iterative reconstruction: potential for maximum radiation dose reduction. Pediatr Radiol. 2020;50:1240–1248. doi: 10.1007/s00247-020-04714-0.
    1. Lenga L, Lange M, Martin SS, Albrecht MH, Booz C, Yel I, Arendt CT, Vogl TJ, Leithner D. Head and neck single-and dual-energy CT: differences in radiation dose and image quality of 2nd and 3rd generation dual-source CT. Br J Radiol. 2021;94:20210069. doi: 10.1259/bjr.20210069.
    1. Noda Y, Iritani Y, Kawai N, Miyoshi T, Ishihara T, Hyodo F, Matsuo M (2021) Deep learning image reconstruction for pancreatic low-dose computed tomography: comparison with hybrid iterative reconstruction. Abdom Radiol:1–7. 10.1007/s00261-021-03111-x
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. Riederer SJ, Pelc NJ, Chesler DA. The noise power spectrum in computed X-ray tomography. Phys Med Biol. 1978;23:446–454. doi: 10.1088/0031-9155/23/3/008.
    1. Pan T, Hasegawa A, Luo D, Wu CC, Vikram R. Technical note: impact on central frequency and noise magnitude ratios by advanced CT image reconstruction techniques. Med Phys. 2020;47:480–487. doi: 10.1002/mp.13937.
    1. Christianson O, Winslow J, Frush DP, Samei E. Automated technique to measure noise in clinical CT examinations. Am J Roentgenol. 2015;205:W93–W99. doi: 10.2214/AJR.14.13613.
    1. Tian X, Samei E. Accurate assessment and prediction of noise in clinical CT images. Med Phys. 2016;43:475–482. doi: 10.1118/1.4938588.
    1. Goerner FL, Clarke GD. Measuring signal-to-noise ratio in partially parallel imaging MRI. Med Phys. 2011;38:5049–5057. doi: 10.1118/1.3618730.
    1. Malkus A, Szczykutowicz TP. A method to extract image noise level from patient images in CT. Med Phys. 2017;44:2173–2184. doi: 10.1002/mp.12240.
    1. Yi X, Guan X, Chen C, Zhang Y, Zhang Z, Li M, Liu P, Yu A, Long X, Liu L, Chen BT, Zee C. Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma. J Cancer. 2018;9:3577–3582. doi: 10.7150/jca.26356.
    1. Masuda T, Nakaura T, Funama Y, Okimoto T, Sato T, Higaki T, Noda N, Imada N, Baba Y, Awai K. Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: validation with IB-IVUS. J Cardiovasc Comput Tomogr. 2019;13:163–169. doi: 10.1016/j.jcct.2018.10.018.
    1. Han D, Heuvelmans MA, Oudkerk M. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl Lung Cancer Res. 2017;6:52. doi: 10.21037/tlcr.2017.01.05.
    1. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear Medicine (EANM) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–354. doi: 10.1007/s00259-014-2961-x.
    1. Jensen CT, Liu X, Tamm EP, Chandler AG, Sun J, Morani AC, Javadi S, Wagner-Bartak NA. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. Am J Roentgenol. 2020;215:50–57. doi: 10.2214/AJR.19.22332.
    1. QIBA Lung Density Biomarker Committee. Computed tomography: lung densitometry, quantitative imaging biomarkers alliance. Profile Stage: consensus. September 04, 2020. Available from:

Source: PubMed

3
Suscribir